Answer :

Answer:

You know inverse is shifting the positions of x and y

so consider the first function

f(x)= [tex](x-1)^{5}[/tex] +2

so y = [tex](x-1)^{5}[/tex]+2

no shift x and y positions

x = [tex](y-1)^{5}[/tex] +2

Now solve for y which gives

x - 2 = [tex](y-1)^{5}[/tex]

[tex]\sqrt[5]{x-2}[/tex] = y - 1

y = [tex]\sqrt[5]{x-2}[/tex] + 1

Hence it is inverse to do the same for the other function

2) y = [tex]\sqrt[3]{x}[/tex] -1

shift positions

x = [tex]\sqrt[3]{y}[/tex] -1

x+1 = [tex]\sqrt[3]{y}[/tex]

y = [tex](x+1)^{3}[/tex]

HEnce it is also inverse