Answer :

Claro, vamos a resolver este problema paso a paso.

### Paso 1: Definir las variables
Dadas las concentraciones de las dos soluciones:
- [tex]\( C_1 = 20\% \)[/tex] (concentración de la primera solución)
- [tex]\( C_2 = 12\% \)[/tex] (concentración de la segunda solución)

Queremos obtener 100 litros de una solución con una concentración:
- [tex]\( C_f = 15\% \)[/tex] (concentración final deseada)

Denotamos:
- [tex]\( V_1 \)[/tex] como el volumen de la primera solución (al 20%).
- [tex]\( V_2 \)[/tex] como el volumen de la segunda solución (al 12%).

### Paso 2: Plantear el sistema de ecuaciones
Dado que queremos obtener un total de 100 litros de la mezcla, tenemos:
[tex]\[ V_1 + V_2 = 100 \][/tex]

Además, considerando la concentración final deseada, planteamos una ecuación en términos de las concentraciones y los volúmenes:
[tex]\[ C_1 \cdot V_1 + C_2 \cdot V_2 = C_f \cdot 100 \][/tex]

Reemplazando las concentraciones, obtenemos:
[tex]\[ 20\% \cdot V_1 + 12\% \cdot V_2 = 15\% \cdot 100 \][/tex]

Es decir:
[tex]\[ 0.20 \cdot V_1 + 0.12 \cdot V_2 = 15 \][/tex]

### Paso 3: Resolver el sistema de ecuaciones

Ya derivamos el siguiente sistema de ecuaciones lineales:
1. [tex]\( V_1 + V_2 = 100 \)[/tex]
2. [tex]\( 0.20 \cdot V_1 + 0.12 \cdot V_2 = 15 \)[/tex]

Multiplicamos la segunda ecuación por 100 para simplificar:
[tex]\[ 20 \cdot V_1 + 12 \cdot V_2 = 1500 \][/tex]

Por lo tanto, el sistema se convierte en:
1. [tex]\( V_1 + V_2 = 100 \)[/tex]
2. [tex]\( 20 \cdot V_1 + 12 \cdot V_2 = 1500 \)[/tex]

### Paso 4: Resolver el sistema de ecuaciones

Resolvemos este sistema de ecuaciones lineales. Al hacerlo, encontramos:
[tex]\[ V_1 = \frac{75}{2} = 37.5 \][/tex]
[tex]\[ V_2 = \frac{125}{2} = 62.5 \][/tex]

### Paso 5: Conclusión

La cantidad de litros de cada solución necesaria para obtener 100 litros de una mezcla al 15% es:
- [tex]\(37.5\)[/tex] litros de la solución al 20%.
- [tex]\(62.5\)[/tex] litros de la solución al 12%.