The perimeter of a semicircle is 5.14 millimeters. What is the semicircle's area?
(1) Use л3.14 and round your answer to the nearest hundredth.
square millimeters



Answer :

To determine the area of the semicircle with a given perimeter of 5.14 millimeters, we can follow these steps:

1. Understanding the Perimeter of a Semicircle:
The perimeter (or circumference) of a semicircle formula includes the straight-line diameter and the curved edge of the semicircle. It is given by:
[tex]\[ \text{Perimeter} = \pi r + 2r \][/tex]
where [tex]\( r \)[/tex] is the radius of the semicircle.

2. Solving for the Radius:
Given the perimeter of 5.14 millimeters:
[tex]\[ 5.14 = \pi r + 2r \][/tex]
Factor [tex]\( r \)[/tex] out of the equation:
[tex]\[ 5.14 = r(\pi + 2) \][/tex]
Solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{5.14}{\pi + 2} \][/tex]

3. Using the Given Value of [tex]\(\pi\)[/tex]:
Given [tex]\(\pi \approx 3.14\)[/tex], substitute this into the equation:
[tex]\[ r = \frac{5.14}{3.14 + 2} = \frac{5.14}{5.14} \approx 1.00 \, \text{millimeters} \][/tex]

4. Calculating the Area of the Semicircle:
The area of a semicircle can be calculated using the formula:
[tex]\[ \text{Area} = \frac{1}{2} \pi r^2 \][/tex]
Substitute [tex]\( r = 1.00 \, \text{millimeters} \)[/tex] and [tex]\(\pi \approx 3.14\)[/tex] into the formula:
[tex]\[ \text{Area} = \frac{1}{2} \times 3.14 \times (1.00)^2 = \frac{1}{2} \times 3.14 \times 1.00 = 1.57 \, \text{square millimeters} \][/tex]

5. Rounding:
The area is already rounded to the nearest hundredth place.

Therefore, the area of the semicircle is:
[tex]\[ \boxed{1.57} \, \text{square millimeters} \][/tex]