Answer :
Sure, I'd be happy to explain the relationship between temperature and the rate of evaporation using the experiment you described. Here is a step-by-step solution to your question:
### Step 1: Prepare the Experiment
1. Materials Required:
- 5 identical household utensils
- 500 ml of water (100 ml for each utensil)
- Measuring cylinder
- Stopwatch or timer
- Notebook and pen for recording observations
2. Initial Setup:
- Pour 100 ml of water into each of the five utensils.
- Place each utensil in a different environment:
- Under a fan
- Under the bed
- In a balcony with sunlight
- In an almirah or cupboard
- A neutral reference point for control (e.g., room temperature not influenced by the above conditions.)
### Step 2: Measure Water Remaining After One Hour
1. Set a timer for one hour.
2. After one hour, measure and record the remaining water in each utensil.
#### Hypothetical Observations (in ml):
- Under a fan: 90 ml
- Under the bed: 95 ml
- In a balcony with sunlight: 80 ml
- In an almirah or cupboard: 97 ml
- Reference point: 93 ml
### Step 3: Total Time for Complete Evaporation
1. Start a timer and note down the time when each utensil runs out of water completely.
#### Hypothetical Observations (in hours):
- Under a fan: 24 hours
- Under the bed: 48 hours
- In a balcony with sunlight: 12 hours
- In an almirah or cupboard: 72 hours
- Reference point: 36 hours
### Step 4: Organize Data in Tabular Form
| Condition | Water Remaining After 1 Hour (ml) | Time for Complete Evaporation (hours) |
|------------------------------|-----------------------------------|--------------------------------------|
| Under a fan | 90 | 24 |
| Under the bed | 95 | 48 |
| In a balcony with sunlight | 80 | 12 |
| In an almirah or cupboard | 97 | 72 |
| Reference point | 93 | 36 |
### Step 5: Visual Representation
#### Bar Graph: Rate of Evaporation After One Hour
- Create a bar graph to show how much water has evaporated after one hour in each condition.
X-axis: Different conditions \
Y-axis: Water evaporated (100 ml - remaining water in ml)
#### Bar Graph: Total Time for Complete Evaporation
- Create another bar graph to represent the total time taken for complete evaporation in each condition.
X-axis: Different conditions \
Y-axis: Time taken for complete evaporation (hours)
### Analysis
The data suggests:
- Faster Evaporation: Balcony with sunlight (80 ml remaining after one hour, complete evaporation in 12 hours) due to direct sunlight and potentially higher temperature.
- Slower Evaporation: In an almirah or cupboard (97 ml remaining after one hour, complete evaporation in 72 hours) due to lack of airflow and lower temperature.
- Moderate Evaporation: Under a fan (24 hours), under the bed (48 hours), and room temperature (reference point) (36 hours).
### Conclusion
- Higher temperatures (balcony with sunlight) and increased airflow (under a fan) result in a faster rate of evaporation.
- Cooler and still air environments (under the bed, in an almirah) slow down the rate of evaporation.
- This experiment illustrates the relationship between temperature, airflow, and the rate of evaporation, demonstrating that higher temperatures and better air circulation increase the rate of evaporation.
### Step 1: Prepare the Experiment
1. Materials Required:
- 5 identical household utensils
- 500 ml of water (100 ml for each utensil)
- Measuring cylinder
- Stopwatch or timer
- Notebook and pen for recording observations
2. Initial Setup:
- Pour 100 ml of water into each of the five utensils.
- Place each utensil in a different environment:
- Under a fan
- Under the bed
- In a balcony with sunlight
- In an almirah or cupboard
- A neutral reference point for control (e.g., room temperature not influenced by the above conditions.)
### Step 2: Measure Water Remaining After One Hour
1. Set a timer for one hour.
2. After one hour, measure and record the remaining water in each utensil.
#### Hypothetical Observations (in ml):
- Under a fan: 90 ml
- Under the bed: 95 ml
- In a balcony with sunlight: 80 ml
- In an almirah or cupboard: 97 ml
- Reference point: 93 ml
### Step 3: Total Time for Complete Evaporation
1. Start a timer and note down the time when each utensil runs out of water completely.
#### Hypothetical Observations (in hours):
- Under a fan: 24 hours
- Under the bed: 48 hours
- In a balcony with sunlight: 12 hours
- In an almirah or cupboard: 72 hours
- Reference point: 36 hours
### Step 4: Organize Data in Tabular Form
| Condition | Water Remaining After 1 Hour (ml) | Time for Complete Evaporation (hours) |
|------------------------------|-----------------------------------|--------------------------------------|
| Under a fan | 90 | 24 |
| Under the bed | 95 | 48 |
| In a balcony with sunlight | 80 | 12 |
| In an almirah or cupboard | 97 | 72 |
| Reference point | 93 | 36 |
### Step 5: Visual Representation
#### Bar Graph: Rate of Evaporation After One Hour
- Create a bar graph to show how much water has evaporated after one hour in each condition.
X-axis: Different conditions \
Y-axis: Water evaporated (100 ml - remaining water in ml)
#### Bar Graph: Total Time for Complete Evaporation
- Create another bar graph to represent the total time taken for complete evaporation in each condition.
X-axis: Different conditions \
Y-axis: Time taken for complete evaporation (hours)
### Analysis
The data suggests:
- Faster Evaporation: Balcony with sunlight (80 ml remaining after one hour, complete evaporation in 12 hours) due to direct sunlight and potentially higher temperature.
- Slower Evaporation: In an almirah or cupboard (97 ml remaining after one hour, complete evaporation in 72 hours) due to lack of airflow and lower temperature.
- Moderate Evaporation: Under a fan (24 hours), under the bed (48 hours), and room temperature (reference point) (36 hours).
### Conclusion
- Higher temperatures (balcony with sunlight) and increased airflow (under a fan) result in a faster rate of evaporation.
- Cooler and still air environments (under the bed, in an almirah) slow down the rate of evaporation.
- This experiment illustrates the relationship between temperature, airflow, and the rate of evaporation, demonstrating that higher temperatures and better air circulation increase the rate of evaporation.