Answer :

To find the circumference of a circle when given the radius, we use the formula for the circumference of a circle:

[tex]\[ C = 2\pi r \][/tex]

where:
- [tex]\( C \)[/tex] represents the circumference,
- [tex]\( \pi \)[/tex] (Pi) is a constant approximately equal to 3.141592653589793,
- [tex]\( r \)[/tex] is the radius of the circle.

In this problem, we are given that the radius ([tex]\( r \)[/tex]) is 50 feet.

Step-by-step solution:
1. Identify the value of the radius, [tex]\( r \)[/tex]:
[tex]\[ r = 50 \text{ feet} \][/tex]

2. Use the value of [tex]\( \pi \)[/tex]:
[tex]\[ \pi = 3.141592653589793 \][/tex]

3. Substitute the radius and the value of [tex]\( \pi \)[/tex] into the formula for the circumference:
[tex]\[ C = 2 \times \pi \times r \][/tex]

4. Calculate the circumference:
[tex]\[ C = 2 \times 3.141592653589793 \times 50 \][/tex]

The calculated circumference is:
[tex]\[ C = 314.1592653589793 \text{ feet} \][/tex]

Therefore, the circumference of a circle with a radius of 50 feet is approximately 314.1592653589793 feet.