Answer :

Answer:

[tex]\tan F = \dfrac{\sqrt{390}}{15}[/tex]

Step-by-step explanation:

To find the tangent of ∠F in right triangle EFG, we can use the tangent trigonometric ratio:

[tex]\boxed{\begin{array}{l}\underline{\textsf{Tangent trigonometric ratio}}\\\\\sf \tan(\theta)=\dfrac{O}{A}\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$\theta$ is the angle.}\\\phantom{ww}\bullet\;\textsf{$O$ is the side opposite the angle.}\\\phantom{ww}\bullet\;\textsf{$A$ is the side adjacent the angle.}\end{array}}[/tex]

The tangent trigonometric ratio is defined as the ratio of the length of the side opposite an acute angle in a right triangle to the length of the side adjacent to that angle.

In this case:

  • The angle is F.
  • The side opposite angle F is side EG.
  • The side adjacent angle F is side EF.

Therefore:

  • [tex]\theta = F[/tex]
  • [tex]O = EG = \sqrt{26}[/tex]
  • [tex]A = EF = \sqrt{15}[/tex]

Substitute the values into the tangent ratio:

[tex]\tan F = \dfrac{\sqrt{26}}{\sqrt{15}}[/tex]

To write this in its simplest form, we can rationalize the denominator by multiplying both the numerator and denominator by √15. This eliminates the square root in the denominator:

[tex]\tan F = \dfrac{\sqrt{26}\times\sqrt{15}}{\sqrt{15}\times \sqrt{15}} \\\\\\ \tan F = \dfrac{\sqrt{26\times15}}{15} \\\\\\ \tan F = \dfrac{\sqrt{390}}{15}[/tex]

Therefore, the tangent of angle F in simplified, rationalized form is:

[tex]\Large\boxed{\boxed{ \tan F = \dfrac{\sqrt{390}}{15} }}[/tex]