Answer :
To find the value of [tex]\( n \)[/tex] where [tex]\( y \)[/tex] varies directly as [tex]\( x \)[/tex], we can use the concept of direct variation. In a direct variation, the relationship between [tex]\( y \)[/tex] and [tex]\( x \)[/tex] can be expressed as:
[tex]\[ y = kx \][/tex]
where [tex]\( k \)[/tex] is the constant of proportionality.
Given two sets of values:
1. [tex]\( y = 180 \)[/tex] when [tex]\( x = n \)[/tex]
2. [tex]\( y = n \)[/tex] when [tex]\( x = 5 \)[/tex]
We can use this information to determine the value of [tex]\( n \)[/tex].
### Step-by-Step Solution
1. Establish the first direct variation relationship:
When [tex]\( y = 180 \)[/tex] and [tex]\( x = n \)[/tex]:
[tex]\[ 180 = kn \][/tex]
Therefore, the constant [tex]\( k \)[/tex] can be expressed as:
[tex]\[ k = \frac{180}{n} \][/tex]
2. Establish the second direct variation relationship:
When [tex]\( y = n \)[/tex] and [tex]\( x = 5 \)[/tex]:
[tex]\[ n = k \cdot 5 \][/tex]
3. Substitute the value of [tex]\( k \)[/tex] from the first relationship into the second relationship:
[tex]\[ n = \left(\frac{180}{n}\right) \cdot 5 \][/tex]
4. Simplify the equation:
[tex]\[ n^2 = 180 \cdot 5 \][/tex]
[tex]\[ n^2 = 900 \][/tex]
5. Solve for [tex]\( n \)[/tex]:
[tex]\[ n = \sqrt{900} \][/tex]
[tex]\[ n = 30 \][/tex]
### Conclusion
The value of [tex]\( n \)[/tex] is [tex]\( 30 \)[/tex].
Thus, the correct answer is:
- [tex]\( 30 \)[/tex]
Therefore, the value of [tex]\( n \)[/tex] is 30.
[tex]\[ y = kx \][/tex]
where [tex]\( k \)[/tex] is the constant of proportionality.
Given two sets of values:
1. [tex]\( y = 180 \)[/tex] when [tex]\( x = n \)[/tex]
2. [tex]\( y = n \)[/tex] when [tex]\( x = 5 \)[/tex]
We can use this information to determine the value of [tex]\( n \)[/tex].
### Step-by-Step Solution
1. Establish the first direct variation relationship:
When [tex]\( y = 180 \)[/tex] and [tex]\( x = n \)[/tex]:
[tex]\[ 180 = kn \][/tex]
Therefore, the constant [tex]\( k \)[/tex] can be expressed as:
[tex]\[ k = \frac{180}{n} \][/tex]
2. Establish the second direct variation relationship:
When [tex]\( y = n \)[/tex] and [tex]\( x = 5 \)[/tex]:
[tex]\[ n = k \cdot 5 \][/tex]
3. Substitute the value of [tex]\( k \)[/tex] from the first relationship into the second relationship:
[tex]\[ n = \left(\frac{180}{n}\right) \cdot 5 \][/tex]
4. Simplify the equation:
[tex]\[ n^2 = 180 \cdot 5 \][/tex]
[tex]\[ n^2 = 900 \][/tex]
5. Solve for [tex]\( n \)[/tex]:
[tex]\[ n = \sqrt{900} \][/tex]
[tex]\[ n = 30 \][/tex]
### Conclusion
The value of [tex]\( n \)[/tex] is [tex]\( 30 \)[/tex].
Thus, the correct answer is:
- [tex]\( 30 \)[/tex]
Therefore, the value of [tex]\( n \)[/tex] is 30.
Answer:
C) 30
Step-by-step explanation:
Given that y varies directly as x, we can express this relationship with the equation:
[tex]\Large\boxed{y=kx}[/tex]
where k is the constant of proportionality.
Given conditions:
- y = 180 when x = n
- y = n when x = 5
Substitute these conditions into y = kx to create two equations:
[tex]180=kn \\\\n=5k[/tex]
Rearrange the first equation to isolate k by dividing both sides by n:
[tex]\dfrac{180}{n}=\dfrac{kn}{n} \\\\\\k=\dfrac{180}{n}[/tex]
Now, substitute the expression for k into the second equation and solve for n:
[tex]n=5 \cdot \dfrac{180}{n} \\\\\\ n= \dfrac{900}{n} \\\\\\ n^2=900 \\\\\\ \sqrt{n^2}=\sqrt{900} \\\\\\n=30[/tex]
Therefore, the value of n is:
[tex]\LARGE\boxed{\boxed{n=30}}[/tex]