Find all solutions of the equation in the interval [tex]\([0, 2\pi)\)[/tex]:

[tex]\[
\cos^2 x = 2 + 2 \sin x
\][/tex]

Write your answer in radians in terms of [tex]\(\pi\)[/tex]. If there is more than one solution, separate them with commas.

[tex]\[ x = \square \][/tex]



Answer :

To solve the equation [tex]\( \cos^2(x) = 2 + 2\sin(x) \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex], we can proceed step-by-step as follows:

1. Rewrite the equation with trigonometric identities:
Recall that [tex]\( \cos^2(x) = 1 - \sin^2(x) \)[/tex]. Using this identity, we rewrite the equation:
[tex]\[ 1 - \sin^2(x) = 2 + 2\sin(x) \][/tex]

2. Form a quadratic equation:
Rearrange the equation to bring all terms to one side:
[tex]\[ 1 - \sin^2(x) - 2\sin(x) - 2 = 0 \][/tex]
Simplify it:
[tex]\[ -\sin^2(x) - 2\sin(x) - 1 = 0 \][/tex]
Multiply by [tex]\(-1\)[/tex] to make it easier to solve:
[tex]\[ \sin^2(x) + 2\sin(x) + 1 = 0 \][/tex]

3. Solve the quadratic equation:
Let [tex]\( u = \sin(x) \)[/tex]. The quadratic equation becomes:
[tex]\[ u^2 + 2u + 1 = 0 \][/tex]
Factorize the quadratic equation:
[tex]\[ (u + 1)^2 = 0 \][/tex]
So, we have:
[tex]\[ u + 1 = 0 \][/tex]
Solving for [tex]\( u \)[/tex]:
[tex]\[ u = -1 \][/tex]

4. Find the corresponding angle for [tex]\( \sin(x) = -1 \)[/tex]:
We need to find [tex]\( x \)[/tex] such that [tex]\( \sin(x) = -1 \)[/tex] within the interval [tex]\([0, 2\pi)\)[/tex]. The value [tex]\( \sin(x) = -1 \)[/tex] occurs at:
[tex]\[ x = \frac{3\pi}{2} \][/tex]

Therefore, the solution to the equation [tex]\( \cos^2(x) = 2 + 2\sin(x) \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] is:
[tex]\[ x = \frac{3\pi}{2} \][/tex]

Other Questions