Answer :
Claro, vamos a resolver cada una de las potencias y sumas indicadas, una por una y de forma directa.
1. [tex]\( 4 = 4 \)[/tex]
2. [tex]\( 6^2 = 6 \times 6 = 36 \)[/tex]
3. [tex]\( 1^2 = 1 \times 1 = 1 \)[/tex]
4. [tex]\( 20^2 = 20 \times 20 = 400 \)[/tex]
5. [tex]\( 10^2 = 10 \times 10 = 100 \)[/tex]
6. [tex]\( 8^2 = 8 \times 8 = 64 \)[/tex]
7. [tex]\( 45 + 1 = 46 \)[/tex]
8. [tex]\( 13^2 = 13 \times 13 = 169 \)[/tex]
9. [tex]\( 14^2 = 14 \times 14 = 196 \)[/tex]
10. [tex]\( 40^2 = 40 \times 40 = 1600 \)[/tex]
11. [tex]\( 60^2 = 60 \times 60 = 3600 \)[/tex]
12. [tex]\( 12^4 = 12 \times 12 \times 12 \times 12 = 20736 \)[/tex]
13. [tex]\( 2^2 = 2 \times 2 = 4 \)[/tex]
14. [tex]\( 5^2 = 5 \times 5 = 25 \)[/tex]
15. [tex]\( 18^2 = 18 \times 18 = 324 \)[/tex]
16. [tex]\( 191 = 191 \)[/tex]
17. [tex]\( 80^2 = 80 \times 80 = 6400 \)[/tex]
18. [tex]\( 25^2 = 25 \times 25 = 625 \)[/tex]
19. [tex]\( 30^2 = 30 \times 30 = 900 \)[/tex]
20. [tex]\( 11^2 = 11 \times 11 = 121 \)[/tex]
Ahora, resolvamos las potencias de bases negativas:
21. [tex]\( (-4)^2 = (-4) \times (-4) = 16 \)[/tex]
22. [tex]\( (-9)^2 = (-9) \times (-9) = 81 \)[/tex]
23. [tex]\( (-2)^2 = (-2) \times (-2) = 4 \)[/tex]
24. [tex]\( (-12)^2 = (-12) \times (-12) = 144 \)[/tex]
Resumiendo:
1. [tex]\( 4 = 4 \)[/tex]
2. [tex]\( 6^2 = 36 \)[/tex]
3. [tex]\( 1^2 = 1 \)[/tex]
4. [tex]\( 20^2 = 400 \)[/tex]
5. [tex]\( 10^2 = 100 \)[/tex]
6. [tex]\( 8^2 = 64 \)[/tex]
7. [tex]\( 45 + 1 = 46 \)[/tex]
8. [tex]\( 13^2 = 169 \)[/tex]
9. [tex]\( 14^2 = 196 \)[/tex]
10. [tex]\( 40^2 = 1600 \)[/tex]
11. [tex]\( 60^2 = 3600 \)[/tex]
12. [tex]\( 12^4 = 20736 \)[/tex]
13. [tex]\( 2^2 = 4 \)[/tex]
14. [tex]\( 5^2 = 25 \)[/tex]
15. [tex]\( 18^2 = 324 \)[/tex]
16. [tex]\( 191 = 191 \)[/tex]
17. [tex]\( 80^2 = 6400 \)[/tex]
18. [tex]\( 25^2 = 625 \)[/tex]
19. [tex]\( 30^2 = 900 \)[/tex]
20. [tex]\( 11^2 = 121 \)[/tex]
21. [tex]\( (-4)^2 = 16 \)[/tex]
22. [tex]\( (-9)^2 = 81 \)[/tex]
23. [tex]\( (-2)^2 = 4 \)[/tex]
24. [tex]\( (-12)^2 = 144 \)[/tex]
1. [tex]\( 4 = 4 \)[/tex]
2. [tex]\( 6^2 = 6 \times 6 = 36 \)[/tex]
3. [tex]\( 1^2 = 1 \times 1 = 1 \)[/tex]
4. [tex]\( 20^2 = 20 \times 20 = 400 \)[/tex]
5. [tex]\( 10^2 = 10 \times 10 = 100 \)[/tex]
6. [tex]\( 8^2 = 8 \times 8 = 64 \)[/tex]
7. [tex]\( 45 + 1 = 46 \)[/tex]
8. [tex]\( 13^2 = 13 \times 13 = 169 \)[/tex]
9. [tex]\( 14^2 = 14 \times 14 = 196 \)[/tex]
10. [tex]\( 40^2 = 40 \times 40 = 1600 \)[/tex]
11. [tex]\( 60^2 = 60 \times 60 = 3600 \)[/tex]
12. [tex]\( 12^4 = 12 \times 12 \times 12 \times 12 = 20736 \)[/tex]
13. [tex]\( 2^2 = 2 \times 2 = 4 \)[/tex]
14. [tex]\( 5^2 = 5 \times 5 = 25 \)[/tex]
15. [tex]\( 18^2 = 18 \times 18 = 324 \)[/tex]
16. [tex]\( 191 = 191 \)[/tex]
17. [tex]\( 80^2 = 80 \times 80 = 6400 \)[/tex]
18. [tex]\( 25^2 = 25 \times 25 = 625 \)[/tex]
19. [tex]\( 30^2 = 30 \times 30 = 900 \)[/tex]
20. [tex]\( 11^2 = 11 \times 11 = 121 \)[/tex]
Ahora, resolvamos las potencias de bases negativas:
21. [tex]\( (-4)^2 = (-4) \times (-4) = 16 \)[/tex]
22. [tex]\( (-9)^2 = (-9) \times (-9) = 81 \)[/tex]
23. [tex]\( (-2)^2 = (-2) \times (-2) = 4 \)[/tex]
24. [tex]\( (-12)^2 = (-12) \times (-12) = 144 \)[/tex]
Resumiendo:
1. [tex]\( 4 = 4 \)[/tex]
2. [tex]\( 6^2 = 36 \)[/tex]
3. [tex]\( 1^2 = 1 \)[/tex]
4. [tex]\( 20^2 = 400 \)[/tex]
5. [tex]\( 10^2 = 100 \)[/tex]
6. [tex]\( 8^2 = 64 \)[/tex]
7. [tex]\( 45 + 1 = 46 \)[/tex]
8. [tex]\( 13^2 = 169 \)[/tex]
9. [tex]\( 14^2 = 196 \)[/tex]
10. [tex]\( 40^2 = 1600 \)[/tex]
11. [tex]\( 60^2 = 3600 \)[/tex]
12. [tex]\( 12^4 = 20736 \)[/tex]
13. [tex]\( 2^2 = 4 \)[/tex]
14. [tex]\( 5^2 = 25 \)[/tex]
15. [tex]\( 18^2 = 324 \)[/tex]
16. [tex]\( 191 = 191 \)[/tex]
17. [tex]\( 80^2 = 6400 \)[/tex]
18. [tex]\( 25^2 = 625 \)[/tex]
19. [tex]\( 30^2 = 900 \)[/tex]
20. [tex]\( 11^2 = 121 \)[/tex]
21. [tex]\( (-4)^2 = 16 \)[/tex]
22. [tex]\( (-9)^2 = 81 \)[/tex]
23. [tex]\( (-2)^2 = 4 \)[/tex]
24. [tex]\( (-12)^2 = 144 \)[/tex]