Four model rockets are launched in a field. The mass of each rocket and the net force acting on it when it launches are given in the table below.

| Rocket | Mass (kg) | Force (N) |
|--------|-----------|-----------|
| 1 | 4.25 | 120 |
| 2 | 3.25 | 120 |
| 3 | 5.50 | 120 |
| 4 | 4.50 | 120 |

Which rocket has the lowest acceleration?

A. Rocket 3
B. Rocket 1
C. Rocket 4
D. Rocket 2



Answer :

To determine which rocket has the lowest acceleration, we need to use Newton's second law of motion which states that acceleration ([tex]\( a \)[/tex]) is equal to the net force ([tex]\( F \)[/tex]) acting on the object divided by the mass ([tex]\( m \)[/tex]) of the object:

[tex]\[ a = \frac{F}{m} \][/tex]

Given the data:
- Rocket 1: Mass = 4.25 kg, Force = 120 N
- Rocket 2: Mass = 3.25 kg, Force = 120 N
- Rocket 3: Mass = 5.50 kg, Force = 120 N
- Rocket 4: Mass = 4.50 kg, Force = 120 N

Let's calculate the acceleration for each rocket.

1. Rocket 1:
[tex]\[ a_1 = \frac{120 \, \text{N}}{4.25 \, \text{kg}} \approx 28.24 \, \text{m/s}^2 \][/tex]

2. Rocket 2:
[tex]\[ a_2 = \frac{120 \, \text{N}}{3.25 \, \text{kg}} \approx 36.92 \, \text{m/s}^2 \][/tex]

3. Rocket 3:
[tex]\[ a_3 = \frac{120 \, \text{N}}{5.50 \, \text{kg}} \approx 21.82 \, \text{m/s}^2 \][/tex]

4. Rocket 4:
[tex]\[ a_4 = \frac{120 \, \text{N}}{4.50 \, \text{kg}} \approx 26.67 \, \text{m/s}^2 \][/tex]

Now, let's compare the accelerations:
- [tex]\( a_1 \approx 28.24 \, \text{m/s}^2 \)[/tex]
- [tex]\( a_2 \approx 36.92 \, \text{m/s}^2 \)[/tex]
- [tex]\( a_3 \approx 21.82 \, \text{m/s}^2 \)[/tex]
- [tex]\( a_4 \approx 26.67 \, \text{m/s}^2 \)[/tex]

Among these accelerations, the lowest acceleration is [tex]\( 21.82 \, \text{m/s}^2 \)[/tex] which corresponds to Rocket 3.

Therefore, the correct answer is:

A. Rocket 3