To determine which rocket has the lowest acceleration, we need to apply Newton's Second Law of Motion, which states:
[tex]\[ a = \frac{F}{m} \][/tex]
where:
- [tex]\(a\)[/tex] is the acceleration,
- [tex]\(F\)[/tex] is the force acting on the rocket (in Newtons),
- [tex]\(m\)[/tex] is the mass of the rocket (in kilograms).
Let's calculate the acceleration for each rocket given their mass and the force.
### Rocket 1
[tex]\[ m_1 = 4.25 \, \text{kg} \][/tex]
[tex]\[ F = 120 \, \text{N} \][/tex]
[tex]\[ a_1 = \frac{120}{4.25} \approx 28.235 \, \text{m/s}^2 \][/tex]
### Rocket 2
[tex]\[ m_2 = 3.25 \, \text{kg} \][/tex]
[tex]\[ F = 120 \, \text{N} \][/tex]
[tex]\[ a_2 = \frac{120}{3.25} \approx 36.923 \, \text{m/s}^2 \][/tex]
### Rocket 3
[tex]\[ m_3 = 5.50 \, \text{kg} \][/tex]
[tex]\[ F = 120 \, \text{N} \][/tex]
[tex]\[ a_3 = \frac{120}{5.50} \approx 21.818 \, \text{m/s}^2 \][/tex]
### Rocket 4
[tex]\[ m_4 = 4.50 \, \text{kg} \][/tex]
[tex]\[ F = 120 \, \text{N} \][/tex]
[tex]\[ a_4 = \frac{120}{4.50} \approx 26.667 \, \text{m/s}^2 \][/tex]
After calculating the accelerations, we observe that Rocket 3 has the lowest acceleration, which is approximately [tex]\(21.818 \, \text{m/s}^2\)[/tex].
Therefore, the rocket with the lowest acceleration is:
A. Rocket 3