Answer :
Sure, let's evaluate the expression [tex]\(3(x-4) + 2x - x^2\)[/tex] for [tex]\(x = 5\)[/tex].
Step-by-Step Solution:
1. Substitute [tex]\(x = 5\)[/tex] into the expression:
[tex]\[ 3(5-4) + 2(5) - 5^2 \][/tex]
2. Simplify inside the parentheses:
[tex]\[ 3(1) + 2(5) - 5^2 \][/tex]
3. Multiply:
[tex]\[ 3 \cdot 1 + 2 \cdot 5 - 5^2 \][/tex]
This simplifies to:
[tex]\[ 3 + 10 - 25 \][/tex]
4. Add and subtract the remaining terms:
[tex]\[ 3 + 10 - 25 = 13 - 25 = -12 \][/tex]
Therefore, the value of the expression [tex]\(3(x-4) + 2x - x^2\)[/tex] when [tex]\(x = 5\)[/tex] is [tex]\(-12\)[/tex].
Answer: A. [tex]\(-12\)[/tex]
Step-by-Step Solution:
1. Substitute [tex]\(x = 5\)[/tex] into the expression:
[tex]\[ 3(5-4) + 2(5) - 5^2 \][/tex]
2. Simplify inside the parentheses:
[tex]\[ 3(1) + 2(5) - 5^2 \][/tex]
3. Multiply:
[tex]\[ 3 \cdot 1 + 2 \cdot 5 - 5^2 \][/tex]
This simplifies to:
[tex]\[ 3 + 10 - 25 \][/tex]
4. Add and subtract the remaining terms:
[tex]\[ 3 + 10 - 25 = 13 - 25 = -12 \][/tex]
Therefore, the value of the expression [tex]\(3(x-4) + 2x - x^2\)[/tex] when [tex]\(x = 5\)[/tex] is [tex]\(-12\)[/tex].
Answer: A. [tex]\(-12\)[/tex]