Answer :
Sure, let's evaluate each part of the given problem:
### Part (a)
We need to find the absolute value of [tex]\( 3 \)[/tex].
[tex]\[ |3| = 3 \][/tex]
### Part (b)
We need to find the absolute value of [tex]\( 8 \)[/tex].
[tex]\[ |8| = 8 \][/tex]
### Part (d)
We need to evaluate [tex]\( |+4| - |-4| \)[/tex].
First, calculate the absolute values:
[tex]\[ |+4| = 4 \quad \text{and} \quad |-4| = 4 \][/tex]
Next, subtract the absolute values:
[tex]\[ 4 - 4 = 0 \][/tex]
### Part (e)
We need to evaluate [tex]\( |+10| - |-12| + |-5| \)[/tex].
First, calculate the absolute values:
[tex]\[ |+10| = 10, \quad |-12| = 12, \quad \text{and} \quad |-5| = 5 \][/tex]
Next, perform the operations in order:
[tex]\[ 10 - 12 + 5 \][/tex]
First, subtract [tex]\( 12 \)[/tex] from [tex]\( 10 \)[/tex]:
[tex]\[ 10 - 12 = -2 \][/tex]
Then, add [tex]\( 5 \)[/tex]:
[tex]\[ -2 + 5 = 3 \][/tex]
### Part (c)
We need to find the absolute value of [tex]\( -3 \)[/tex].
[tex]\[ |-3| = 3 \][/tex]
### Part (f)
We need to find the absolute value of [tex]\( -2 \)[/tex].
[tex]\[ |-2| = 2 \][/tex]
So, the evaluated results are:
(a) [tex]\( |3| = 3 \)[/tex]
(b) [tex]\( |8| = 8 \)[/tex]
(d) [tex]\( |+4| - |-4| = 0 \)[/tex]
(e) [tex]\( |+10| - |-12| + |-5| = 3 \)[/tex]
(c) [tex]\( |-3| = 3 \)[/tex]
(f) [tex]\( |-2| = 2 \)[/tex]
### Part (a)
We need to find the absolute value of [tex]\( 3 \)[/tex].
[tex]\[ |3| = 3 \][/tex]
### Part (b)
We need to find the absolute value of [tex]\( 8 \)[/tex].
[tex]\[ |8| = 8 \][/tex]
### Part (d)
We need to evaluate [tex]\( |+4| - |-4| \)[/tex].
First, calculate the absolute values:
[tex]\[ |+4| = 4 \quad \text{and} \quad |-4| = 4 \][/tex]
Next, subtract the absolute values:
[tex]\[ 4 - 4 = 0 \][/tex]
### Part (e)
We need to evaluate [tex]\( |+10| - |-12| + |-5| \)[/tex].
First, calculate the absolute values:
[tex]\[ |+10| = 10, \quad |-12| = 12, \quad \text{and} \quad |-5| = 5 \][/tex]
Next, perform the operations in order:
[tex]\[ 10 - 12 + 5 \][/tex]
First, subtract [tex]\( 12 \)[/tex] from [tex]\( 10 \)[/tex]:
[tex]\[ 10 - 12 = -2 \][/tex]
Then, add [tex]\( 5 \)[/tex]:
[tex]\[ -2 + 5 = 3 \][/tex]
### Part (c)
We need to find the absolute value of [tex]\( -3 \)[/tex].
[tex]\[ |-3| = 3 \][/tex]
### Part (f)
We need to find the absolute value of [tex]\( -2 \)[/tex].
[tex]\[ |-2| = 2 \][/tex]
So, the evaluated results are:
(a) [tex]\( |3| = 3 \)[/tex]
(b) [tex]\( |8| = 8 \)[/tex]
(d) [tex]\( |+4| - |-4| = 0 \)[/tex]
(e) [tex]\( |+10| - |-12| + |-5| = 3 \)[/tex]
(c) [tex]\( |-3| = 3 \)[/tex]
(f) [tex]\( |-2| = 2 \)[/tex]