Answer :
To solve the problem [tex]\(\frac{2 \times 10^4 + 6 \times 10^5}{3.1 \times 10^3}\)[/tex], let's walk through the steps in detail.
1. Calculate the numerator:
[tex]\[ 2 \times 10^4 + 6 \times 10^5 \][/tex]
Breaking down the calculation:
[tex]\[ 2 \times 10^4 = 20,000 \quad \text{and} \quad 6 \times 10^5 = 600,000 \][/tex]
Adding these values together:
[tex]\[ 20,000 + 600,000 = 620,000 \][/tex]
Therefore, the numerator is [tex]\(620,000\)[/tex].
2. Calculate the denominator:
[tex]\[ 3.1 \times 10^3 \][/tex]
Converting it to a numerical value:
[tex]\[ 3.1 \times 10^3 = 3,100 \][/tex]
Therefore, the denominator is [tex]\(3,100\)[/tex].
3. Perform the division:
[tex]\[ \frac{620,000}{3,100} \][/tex]
Carrying out the division:
[tex]\[ \frac{620,000}{3,100} = 200 \][/tex]
4. Convert the result to standard form:
The result is [tex]\(200\)[/tex]. We express this in standard form, which is a way of writing numbers that are too big or too small conveniently.
Standard form follows the structure [tex]\(a \times 10^n\)[/tex], where [tex]\(1 \leq a < 10\)[/tex].
For [tex]\(200\)[/tex], we can write:
[tex]\[ 200 = 2.00 \times 10^2 \][/tex]
Hence, the result given in standard form is:
[tex]\[ 2.00 \times 10^2 \][/tex]
Therefore, the final answer to the problem [tex]\(\frac{2 \times 10^4 + 6 \times 10^5}{3.1 \times 10^3}\)[/tex] in standard form is [tex]\(\boxed{2.00 \times 10^2}\)[/tex].
1. Calculate the numerator:
[tex]\[ 2 \times 10^4 + 6 \times 10^5 \][/tex]
Breaking down the calculation:
[tex]\[ 2 \times 10^4 = 20,000 \quad \text{and} \quad 6 \times 10^5 = 600,000 \][/tex]
Adding these values together:
[tex]\[ 20,000 + 600,000 = 620,000 \][/tex]
Therefore, the numerator is [tex]\(620,000\)[/tex].
2. Calculate the denominator:
[tex]\[ 3.1 \times 10^3 \][/tex]
Converting it to a numerical value:
[tex]\[ 3.1 \times 10^3 = 3,100 \][/tex]
Therefore, the denominator is [tex]\(3,100\)[/tex].
3. Perform the division:
[tex]\[ \frac{620,000}{3,100} \][/tex]
Carrying out the division:
[tex]\[ \frac{620,000}{3,100} = 200 \][/tex]
4. Convert the result to standard form:
The result is [tex]\(200\)[/tex]. We express this in standard form, which is a way of writing numbers that are too big or too small conveniently.
Standard form follows the structure [tex]\(a \times 10^n\)[/tex], where [tex]\(1 \leq a < 10\)[/tex].
For [tex]\(200\)[/tex], we can write:
[tex]\[ 200 = 2.00 \times 10^2 \][/tex]
Hence, the result given in standard form is:
[tex]\[ 2.00 \times 10^2 \][/tex]
Therefore, the final answer to the problem [tex]\(\frac{2 \times 10^4 + 6 \times 10^5}{3.1 \times 10^3}\)[/tex] in standard form is [tex]\(\boxed{2.00 \times 10^2}\)[/tex].