Answer :
Sure, let’s demonstrate step-by-step that [tex]\(2x + 3\)[/tex] is a factor of [tex]\(f(x) = 4x^4 + 8x^3 + 5x^2 + x - 3\)[/tex] by performing polynomial division.
1. Setup the division:
We need to divide [tex]\(4x^4 + 8x^3 + 5x^2 + x - 3\)[/tex] by [tex]\(2x + 3\)[/tex].
2. First division:
Divide the leading term [tex]\(4x^4\)[/tex] by [tex]\(2x\)[/tex]:
[tex]\[ \frac{4x^4}{2x} = 2x^3 \][/tex]
Multiply [tex]\(2x^3\)[/tex] by [tex]\(2x + 3\)[/tex]:
[tex]\[ 2x^3 \cdot (2x + 3) = 4x^4 + 6x^3 \][/tex]
Subtract from the original polynomial:
[tex]\[ (4x^4 + 8x^3 + 5x^2 + x - 3) - (4x^4 + 6x^3) = 2x^3 + 5x^2 + x - 3 \][/tex]
3. Second division:
Divide the new leading term [tex]\(2x^3\)[/tex] by [tex]\(2x\)[/tex]:
[tex]\[ \frac{2x^3}{2x} = x^2 \][/tex]
Multiply [tex]\(x^2\)[/tex] by [tex]\(2x + 3\)[/tex]:
[tex]\[ x^2 \cdot (2x + 3) = 2x^3 + 3x^2 \][/tex]
Subtract:
[tex]\[ (2x^3 + 5x^2 + x - 3) - (2x^3 + 3x^2) = 2x^2 + x - 3 \][/tex]
4. Third division:
Divide the new leading term [tex]\(2x^2\)[/tex] by [tex]\(2x\)[/tex]:
[tex]\[ \frac{2x^2}{2x} = x \][/tex]
Multiply [tex]\(x\)[/tex] by [tex]\(2x + 3\)[/tex]:
[tex]\[ x \cdot (2x + 3) = 2x^2 + 3x \][/tex]
Subtract:
[tex]\[ (2x^2 + x - 3) - (2x^2 + 3x) = -2x - 3 \][/tex]
5. Fourth division:
Divide the new leading term [tex]\(-2x\)[/tex] by [tex]\(2x\)[/tex]:
[tex]\[ \frac{-2x}{2x} = -1 \][/tex]
Multiply [tex]\(-1\)[/tex] by [tex]\(2x + 3\)[/tex]:
[tex]\[ -1 \cdot (2x + 3) = -2x - 3 \][/tex]
Subtract:
[tex]\[ (-2x - 3) - (-2x - 3) = 0 \][/tex]
6. Conclusion:
The remainder after the polynomial division is 0, which confirms that [tex]\(2x + 3\)[/tex] is indeed a factor of [tex]\(4x^4 + 8x^3 + 5x^2 + x - 3\)[/tex]. Hence, the quotient of the division is [tex]\(2x^3 + x^2 + x - 1\)[/tex].
1. Setup the division:
We need to divide [tex]\(4x^4 + 8x^3 + 5x^2 + x - 3\)[/tex] by [tex]\(2x + 3\)[/tex].
2. First division:
Divide the leading term [tex]\(4x^4\)[/tex] by [tex]\(2x\)[/tex]:
[tex]\[ \frac{4x^4}{2x} = 2x^3 \][/tex]
Multiply [tex]\(2x^3\)[/tex] by [tex]\(2x + 3\)[/tex]:
[tex]\[ 2x^3 \cdot (2x + 3) = 4x^4 + 6x^3 \][/tex]
Subtract from the original polynomial:
[tex]\[ (4x^4 + 8x^3 + 5x^2 + x - 3) - (4x^4 + 6x^3) = 2x^3 + 5x^2 + x - 3 \][/tex]
3. Second division:
Divide the new leading term [tex]\(2x^3\)[/tex] by [tex]\(2x\)[/tex]:
[tex]\[ \frac{2x^3}{2x} = x^2 \][/tex]
Multiply [tex]\(x^2\)[/tex] by [tex]\(2x + 3\)[/tex]:
[tex]\[ x^2 \cdot (2x + 3) = 2x^3 + 3x^2 \][/tex]
Subtract:
[tex]\[ (2x^3 + 5x^2 + x - 3) - (2x^3 + 3x^2) = 2x^2 + x - 3 \][/tex]
4. Third division:
Divide the new leading term [tex]\(2x^2\)[/tex] by [tex]\(2x\)[/tex]:
[tex]\[ \frac{2x^2}{2x} = x \][/tex]
Multiply [tex]\(x\)[/tex] by [tex]\(2x + 3\)[/tex]:
[tex]\[ x \cdot (2x + 3) = 2x^2 + 3x \][/tex]
Subtract:
[tex]\[ (2x^2 + x - 3) - (2x^2 + 3x) = -2x - 3 \][/tex]
5. Fourth division:
Divide the new leading term [tex]\(-2x\)[/tex] by [tex]\(2x\)[/tex]:
[tex]\[ \frac{-2x}{2x} = -1 \][/tex]
Multiply [tex]\(-1\)[/tex] by [tex]\(2x + 3\)[/tex]:
[tex]\[ -1 \cdot (2x + 3) = -2x - 3 \][/tex]
Subtract:
[tex]\[ (-2x - 3) - (-2x - 3) = 0 \][/tex]
6. Conclusion:
The remainder after the polynomial division is 0, which confirms that [tex]\(2x + 3\)[/tex] is indeed a factor of [tex]\(4x^4 + 8x^3 + 5x^2 + x - 3\)[/tex]. Hence, the quotient of the division is [tex]\(2x^3 + x^2 + x - 1\)[/tex].