Given expression:
[tex]$\log _x 2 - \left(\log^3 + \log _x\right)$[/tex]

Corrected expression (assuming you want to remove unnecessary elements and clarify the intent):

[tex]$\log_x 2 - \log^3 - \log_x$[/tex]



Answer :

Sure, let's solve the given expression step-by-step:

Given:
[tex]\[ \log_x 2 - \left( \log 3 + \log_x x \right) \][/tex]

First, let's break down each term in the expression.

### Expression Breakdown:

1. [tex]\(\log_x 2\)[/tex]: This is the logarithm of 2 with base [tex]\(x\)[/tex].

2. [tex]\(\log 3\)[/tex]: This is the logarithm of 3 with the default base, which is generally understood to be 10 (common log) or [tex]\(e\)[/tex] (natural log).

3. [tex]\(\log_x x\)[/tex]: This is the logarithm of [tex]\(x\)[/tex] with base [tex]\(x\)[/tex]. By the properties of logarithms, this is equal to:
[tex]\[\log_x x = 1\][/tex]

Now, let's plug these back into our expression:

[tex]\[ \log_x 2 - \left( \log 3 + 1 \right) \][/tex]

### Simplifying Logarithms:

1. Logarithm base conversion:
Recall the change of base formula for logarithms:
[tex]\[ \log_b a = \frac{\log_k a}{\log_k b} \][/tex]
This allows us to convert any logarithm to another base (commonly to base 10 or [tex]\(e\)[/tex]).

So, [tex]\(\log_x 2\)[/tex] can be written as:
[tex]\[\log_x 2 = \frac{\log(2)}{\log(x)}\][/tex]

Putting this into the expression:
[tex]\[ \frac{\log(2)}{\log(x)} - \left( \log 3 + 1 \right) \][/tex]

### Writing out the full expression:
[tex]\[ \frac{\log(2)}{\log(x)} - \log(3) - 1 \][/tex]

### Final Expression:
After combining all terms, we get the simplified form:
[tex]\[ -\log(x) - \log(3) + \frac{\log(2)}{\log(x)} \][/tex]

Therefore, the simplified form of the given expression:
[tex]\[ \log_x 2 - \left(\log 3 + \log_x x\right) \][/tex]
is:
[tex]\[ -\log(x) - \log(3) + \frac{\log(2)}{\log(x)} \][/tex]