1) Given the following data:

[tex]\[
\left\lvert
\begin{tabular}{c|c|c|c}
3 & 4 \\
$x-1$ & $2x-3$ & $x+4$ & $5x-4$ \\
\end{tabular}
\right.
\][/tex]

[tex]\[
\text{and}
\][/tex]

[tex]\[
\left\lvert
\begin{array}{cc|c|c}
2 & 3 & 4 & 5 \\
$x-1$ & $2x-3$ & $x+4$ & $5x-4$ \\
\end{array}
\right.
\][/tex]

If the mean is [tex]\(\frac{43}{4}\)[/tex], solve for [tex]\(x\)[/tex].



Answer :

To solve the problem, we need to find the value of [tex]\( x \)[/tex] that makes the mean of the given expressions equal to [tex]\(\frac{43}{4}\)[/tex].

Given expressions:
[tex]\[ \begin{array}{cccc} x-1 & 2x-3 & x+4 & 5x-4 \end{array} \][/tex]

1. Set Up the Mean Calculation:

The mean of these expressions is calculated as:
[tex]\[ \text{Mean} = \frac{(x-1) + (2x-3) + (x+4) + (5x-4)}{4} \][/tex]

2. Sum the Expressions:

Combine all terms:
[tex]\[ (x-1) + (2x-3) + (x+4) + (5x-4) \][/tex]

3. Simplify the Sum:

Combine like terms:
[tex]\[ x + 2x + x + 5x - 1 - 3 + 4 - 4 \][/tex]
Combine the [tex]\( x \)[/tex] terms:
[tex]\[ 9x - 4 \][/tex]

4. Set up the Equation with the Given Mean:

The mean is given as [tex]\(\frac{43}{4}\)[/tex]. Now we set up the equation:
[tex]\[ \frac{9x - 4}{4} = \frac{43}{4} \][/tex]

5. Solve for [tex]\( x \)[/tex]:

Multiply both sides by 4 to clear the denominator:
[tex]\[ 9x - 4 = 43 \][/tex]
Add 4 to both sides:
[tex]\[ 9x = 47 \][/tex]
Divide by 9:
[tex]\[ x = \frac{47}{9} \][/tex]

The value of [tex]\( x \)[/tex] is approximately [tex]\( 5.222 \)[/tex].

6. Evaluate Each Expression:

Substitute [tex]\( x = \frac{47}{9} \)[/tex] into each expression:

[tex]\[ x - 1 = \frac{47}{9} - 1 = \frac{47}{9} - \frac{9}{9} = \frac{38}{9} \approx 4.222 \][/tex]

[tex]\[ 2x - 3 = 2 \left( \frac{47}{9} \right) - 3 = \frac{94}{9} - \frac{27}{9} = \frac{67}{9} \approx 7.444 \][/tex]

[tex]\[ x + 4 = \frac{47}{9} + 4 = \frac{47}{9} + \frac{36}{9} = \frac{83}{9} \approx 9.222 \][/tex]

[tex]\[ 5x - 4 = 5 \left( \frac{47}{9} \right) - 4 = \frac{235}{9} - \frac{36}{9} = \frac{199}{9} \approx 22.111 \][/tex]

Thus, the value of [tex]\( x \)[/tex] is [tex]\(\frac{47}{9} \approx 5.222\)[/tex], and the evaluated expressions at this [tex]\( x \)[/tex] value are approximately:

1. [tex]\( x-1 \approx 4.222 \)[/tex]
2. [tex]\( 2x-3 \approx 7.444 \)[/tex]
3. [tex]\( x+4 \approx 9.222 \)[/tex]
4. [tex]\( 5x-4 \approx 22.111 \)[/tex]

These values fulfill the given condition that the mean is [tex]\(\frac{43}{4}\)[/tex].