Simplify the inequality:
[tex]\( 3x + 2y \ \textless \ 0 \)[/tex]

Express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\( y \ \textless \ -\frac{3}{2}x \)[/tex]



Answer :

Sure! Let's go through the given inequalities step-by-step.

### Step 1: Understand and Write the Inequalities

We are given:
1. [tex]\(3x + 2y < 0\)[/tex]
2. [tex]\(y < -\frac{3}{2}x\)[/tex]

### Step 2: Isolate [tex]\( y \)[/tex] in the First Inequality

Let's isolate [tex]\( y \)[/tex] in [tex]\( 3x + 2y < 0 \)[/tex]:

1. Starting with the inequality:
[tex]\[ 3x + 2y < 0 \][/tex]

2. Subtract [tex]\( 3x \)[/tex] from both sides:
[tex]\[ 2y < -3x \][/tex]

3. Divide both sides by 2:
[tex]\[ y < -\frac{3}{2}x \][/tex]

So, rewriting the first inequality in terms of [tex]\( y \)[/tex]:

[tex]\[ y < -\frac{3}{2}x \][/tex]

### Step 3: Examine the Second Inequality

The second inequality is already given to us in a form with [tex]\( y \)[/tex] isolated:

[tex]\[ y < -\frac{3}{2}x \][/tex]

### Step 4: Combine the Results

We now compare the two results from our inequalities:

1. From the first inequality:
[tex]\[ y < -\frac{3}{2}x \][/tex]

2. From the second inequality:
[tex]\[ y < -\frac{3}{2}x \][/tex]

Both of these results are the same. This means the regions for [tex]\( y \)[/tex] defined by both inequalities are identical.

Therefore, the solution to the system of inequalities is:

[tex]\[ y < -\frac{3}{2}x \][/tex]

This represents the region in the coordinate plane below the line [tex]\( y = -\frac{3}{2}x \)[/tex].