What is the value of [tex]\( 36x - 8y^2 \)[/tex] when [tex]\( x = 3 \)[/tex] and [tex]\( y = -6 \)[/tex]?

A. -288
B. -180
C. 1,200
D. 3,600



Answer :

To find the value of the expression [tex]\(36x - 8y^2\)[/tex] when [tex]\(x = 3\)[/tex] and [tex]\(y = -6\)[/tex], follow these steps:

1. Substitute the value of [tex]\(x = 3\)[/tex] into the expression:
[tex]\[ 36 \times 3 - 8y^2 \][/tex]

2. Simplify the multiplication:
[tex]\[ 108 - 8y^2 \][/tex]

3. Next, substitute the value of [tex]\(y = -6\)[/tex] into the expression:
[tex]\[ 108 - 8 \times (-6)^2 \][/tex]

4. Calculate [tex]\((-6)^2\)[/tex]:
[tex]\[ (-6)^2 = 36 \][/tex]

5. Substitute [tex]\(36\)[/tex] back into the expression:
[tex]\[ 108 - 8 \times 36 \][/tex]

6. Perform the multiplication:
[tex]\[ 108 - 288 \][/tex]

7. Finally, subtract [tex]\(288\)[/tex] from [tex]\(108\)[/tex]:
[tex]\[ 108 - 288 = -180 \][/tex]

Thus, the value of [tex]\(36x - 8y^2\)[/tex] when [tex]\(x = 3\)[/tex] and [tex]\(y = -6\)[/tex] is [tex]\(-180\)[/tex].

The correct answer is [tex]\( \boxed{-180} \)[/tex].