If [tex]\( f(x) = 3 - 2x \)[/tex] and [tex]\( g(x) = \frac{1}{x+5} \)[/tex], what is the value of [tex]\( \left( \frac{f}{g} \right)(8) \)[/tex]?

A. [tex]\(-169\)[/tex]
B. [tex]\(-1\)[/tex]
C. 13
D. 104



Answer :

To find the value of [tex]\(\left(\frac{f}{g}\right)(8)\)[/tex] where [tex]\(f(x) = 3 - 2x\)[/tex] and [tex]\(g(x) = \frac{1}{x+5}\)[/tex], we need to follow these steps:

1. Evaluate [tex]\(f(8)\)[/tex]:

[tex]\[ f(x) = 3 - 2x \][/tex]

Substitute [tex]\(x = 8\)[/tex]:

[tex]\[ f(8) = 3 - 2 \cdot 8 \][/tex]
[tex]\[ f(8) = 3 - 16 \][/tex]
[tex]\[ f(8) = -13 \][/tex]

2. Evaluate [tex]\(g(8)\)[/tex]:

[tex]\[ g(x) = \frac{1}{x+5} \][/tex]

Substitute [tex]\(x = 8\)[/tex]:

[tex]\[ g(8) = \frac{1}{8 + 5} \][/tex]
[tex]\[ g(8) = \frac{1}{13} \][/tex]

3. Compute the value of [tex]\(\left(\frac{f}{g}\right)(8)\)[/tex]:

[tex]\[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \][/tex]

Substitute [tex]\(x = 8\)[/tex]:

[tex]\[ \left(\frac{f}{g}\right)(8) = \frac{f(8)}{g(8)} = \frac{-13}{\frac{1}{13}} \][/tex]

4. Simplify the expression:

[tex]\[ \frac{-13}{\frac{1}{13}} = -13 \times 13 = -169 \][/tex]

So, the value of [tex]\(\left(\frac{f}{g}\right)(8)\)[/tex] is [tex]\(\boxed{-169}\)[/tex].