Order the expressions from least value to greatest value.

A. [tex]\(-4.8 \times 3.2\)[/tex]

B. [tex]\(2 \frac{1}{4} + \left(-1 \frac{2}{5}\right)\)[/tex]

C. [tex]\(\frac{4.32}{3}\)[/tex]

D. [tex]\(-2 \frac{3}{5} - \left(-1 \frac{2}{5}\right)\)[/tex]

[tex]\(\square \ \textless \ \square \ \textless \ \square \ \textless \ \square\)[/tex]



Answer :

To solve the task of ordering the given expressions from least value to greatest value, we will first evaluate each of them. Here are the steps for solving this:

### Step 1: Evaluate each expression
1. Expression 1: [tex]\( -4.8 \times 3.2 \)[/tex]
[tex]\[ -4.8 \times 3.2 = -15.36 \][/tex]

2. Expression 2: [tex]\( 2 \frac{1}{4} + \left( -1 \frac{2}{5} \right) \)[/tex]
Convert the mixed numbers to improper fractions:
[tex]\[ 2 \frac{1}{4} = 2 + \frac{1}{4} = \frac{9}{4} \][/tex]
[tex]\[ -1 \frac{2}{5} = -1 - \frac{2}{5} = -\frac{7}{5} \][/tex]
Combine these values:
[tex]\[ \frac{9}{4} + \left( -\frac{7}{5} \right) \][/tex]
In order to add these fractions, they need a common denominator.
[tex]\[ \frac{9}{4} = \frac{45}{20}, \quad -\frac{7}{5} = -\frac{28}{20} \][/tex]
Now add them:
[tex]\[ \frac{45}{20} - \frac{28}{20} = \frac{17}{20} = 0.85 \][/tex]

3. Expression 3: [tex]\( \frac{4.32}{3} \)[/tex]
[tex]\[ \frac{4.32}{3} = 1.44 \][/tex]

4. Expression 4: [tex]\( -2 \frac{3}{5} - \left( -1 \frac{2}{5} \right) \)[/tex]
Convert the mixed numbers to improper fractions:
[tex]\[ -2 \frac{3}{5} = -2 - \frac{3}{5} = -\frac{13}{5} \][/tex]
[tex]\[ -1 \frac{2}{5} = -1 - \frac{2}{5} = -\frac{7}{5} \][/tex]
Rearrange the expression:
[tex]\[ -\frac{13}{5} - \left( -(-\frac{7}{5}) \right) = -\frac{13}{5} + \frac{7}{5} \][/tex]
Combine these values:
[tex]\[ -\frac{13}{5} + \frac{7}{5} = -\frac{6}{5} = -1.20 \][/tex]

### Step 2: Order the expressions from least value to greatest value
We have computed the values as follows:
1. Expression 1: [tex]\( -15.36 \)[/tex]
2. Expression 2: [tex]\( 0.85 \)[/tex]
3. Expression 3: [tex]\( 1.44 \)[/tex]
4. Expression 4: [tex]\( -1.20 \)[/tex]

Now we will arrange these values from least to greatest:
[tex]\[ -15.36 < -1.20 < 0.85 < 1.44 \][/tex]

Thus, the correct order of the expressions is:
[tex]\[ -4.8 \times 3.2 \quad < -2 \frac{3}{5} - \left( -1 \frac{2}{5} \right) \quad < 2 \frac{1}{4} + \left( -1 \frac{2}{5} \right) \quad < \frac{4.32}{3} \][/tex]

So, the ordered expressions from least to greatest value are:

[tex]$-4.8 \times 3.2$[/tex] [tex]\(<\)[/tex] [tex]$-2 \frac{3}{5} -\left(-1 \frac{2}{5}\right)$[/tex] [tex]\(<\)[/tex] [tex]$2 \frac{1}{4}+\left(-1 \frac{2}{5}\right)$[/tex] [tex]\(<\)[/tex] [tex]$\frac{4.32}{3}$[/tex]