Answered

Which of the following is equal to the expression below?

[tex]\[
(8 \cdot 320)^{\frac{1}{3}}
\][/tex]

A. [tex]\(8 \sqrt[3]{5}\)[/tex]
B. 40
C. 30
D. [tex]\(10 \sqrt[3]{5}\)[/tex]



Answer :

To solve the expression [tex]\((8 \cdot 320)^{\frac{1}{3}}\)[/tex], let's break down the process step-by-step:

1. First, calculate the product inside the parentheses:
[tex]\[ 8 \times 320 = 2560 \][/tex]

2. Next, find the cube root of the result:
[tex]\[ (2560)^{\frac{1}{3}} \][/tex]

3. Compute the cube root of 2560. This calculation gives us approximately:
[tex]\[ (2560)^{\frac{1}{3}} \approx 13.6798 \][/tex]

Now, let's compare this result with each of the given options:

- Option A: [tex]\(8 \sqrt[3]{5}\)[/tex]
[tex]\[ 8 \times (5^{\frac{1}{3}}) \approx 8 \times 1.710 \approx 13.6798 \][/tex]

- Option B: 40
[tex]\[ 40 \neq 13.6798 \][/tex]

- Option C: 30
[tex]\[ 30 \neq 13.6798 \][/tex]

- Option D: [tex]\(10 \sqrt[3]{5}\)[/tex]
[tex]\[ 10 \times (5^{\frac{1}{3}}) \approx 10 \times 1.710 \approx 17.0998 \][/tex]

From the calculations, we can see that the expression [tex]\((8 \cdot 320)^{\frac{1}{3}}\)[/tex] is approximately equal to Option A: [tex]\(8 \sqrt[3]{5}\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{8 \sqrt[3]{5}} \][/tex]