Answered

Rewrite the following radical expression in rational exponent form:

[tex]\[
(\sqrt{x})^5
\][/tex]

A. [tex]\(\left(\frac{1}{x^2}\right)^5\)[/tex]
B. [tex]\(x^{\frac{2}{5}}\)[/tex]
C. [tex]\(x^{\frac{5}{2}}\)[/tex]
D. [tex]\(\frac{x^2}{x^5}\)[/tex]



Answer :

Certainly! Let's rewrite the given radical expression [tex]\((\sqrt{x})^5\)[/tex] in rational exponent form. We'll go through it step-by-step:

1. Understand the Square Root:
The square root of [tex]\(x\)[/tex], [tex]\(\sqrt{x}\)[/tex], can be expressed using a rational exponent as [tex]\(x^{\frac{1}{2}}\)[/tex].

2. Rewrite the Expression:
We substitute [tex]\(\sqrt{x}\)[/tex] with [tex]\(x^{\frac{1}{2}}\)[/tex]. This gives us:
[tex]\[ (\sqrt{x})^5 = (x^{\frac{1}{2}})^5 \][/tex]

3. Apply the Power of a Power Property:
When you have an expression [tex]\((a^m)^n\)[/tex], it simplifies to [tex]\(a^{m \cdot n}\)[/tex]. Applying this property:
[tex]\[ (x^{\frac{1}{2}})^5 = x^{\frac{1}{2} \cdot 5} \][/tex]

4. Simplify the Exponent:
Multiply the exponents:
[tex]\[ \frac{1}{2} \cdot 5 = \frac{5}{2} \][/tex]
So, we get:
[tex]\[ x^{\frac{5}{2}} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{x^{\frac{5}{2}}} \][/tex]