Answer :

To find the value of [tex]\(\Delta G\)[/tex] at [tex]\(5000 \, \text{K}\)[/tex] given that [tex]\(\Delta H = -220 \, \text{kJ/mol}\)[/tex] and [tex]\(\Delta S = -0.05 \, \text{kJ/(mol} \cdot \text{K)}\)[/tex], we use the Gibbs free energy formula:

[tex]\[ \Delta G = \Delta H - T \Delta S \][/tex]

Substitute the given values into the formula:

[tex]\[ \Delta G = -220 \, \text{kJ/mol} - (5000 \, \text{K} \times -0.05 \, \text{kJ/(mol} \cdot \text{K)}) \][/tex]

Next, we perform the multiplication inside the formula:

[tex]\[ 5000 \, \text{K} \times -0.05 \, \text{kJ/(mol} \cdot \text{K)} = -250 \, \text{kJ/mol} \][/tex]

So the equation now becomes:

[tex]\[ \Delta G = -220 \, \text{kJ/mol} - (-250 \, \text{kJ/mol}) \][/tex]

Subtracting a negative is the same as adding a positive:

[tex]\[ \Delta G = -220 \, \text{kJ/mol} + 250 \, \text{kJ/mol} \][/tex]

Finally, combine the terms:

[tex]\[ \Delta G = 30 \, \text{kJ/mol} \][/tex]

So, the value of [tex]\(\Delta G\)[/tex] at [tex]\(5000 \, \text{K}\)[/tex] is:

[tex]\[ \Delta G = 30 \, \text{kJ/mol} \][/tex]

Therefore, the correct answer is:

D. [tex]\(30 \, \text{kJ}\)[/tex]