Answered

Type the correct answer in the box. Use numerals instead of words. If necessary, use [tex]$/$[/tex] for the fraction bar.

What value of [tex]$p$[/tex] makes the equation true?

[tex]\[
-3p + \frac{1}{8} = -\frac{1}{4}
\][/tex]

[tex]$p = \square$[/tex]



Answer :

To solve for the value of [tex]\( p \)[/tex] that makes the equation true:

[tex]\[ -3p + \frac{1}{8} = -\frac{1}{4} \][/tex]

We will follow these steps:

1. First, isolate the term involving [tex]\( p \)[/tex]. Subtract [tex]\(\frac{1}{8}\)[/tex] from both sides of the equation to get:

[tex]\[ -3p = -\frac{1}{4} - \frac{1}{8} \][/tex]

2. Find a common denominator to combine the fractions on the right side. The common denominator of 4 and 8 is 8.

[tex]\[ -\frac{1}{4} = -\frac{2}{8} \][/tex]

Now substituting back, we get:

[tex]\[ -3p = -\frac{2}{8} - \frac{1}{8} \][/tex]

3. Combine the fractions on the right side:

[tex]\[ -3p = -\frac{3}{8} \][/tex]

4. To isolate [tex]\( p \)[/tex], divide both sides by -3:

[tex]\[ p = \frac{-\frac{3}{8}}{-3} = \frac{3}{8 \times 3} = \frac{3}{24} = 0.125 \][/tex]

Thus, the value of [tex]\( p \)[/tex] that makes the equation true is:
[tex]\[ 0.125 \][/tex]