Answer :
To solve the problem of finding the values of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex] in the equation, we need to analyze the matrices given on both sides of the equation and equate their respective elements.
The given matrices are:
[tex]\[ \left[\begin{array}{rr} -1 & -6 \\ 9 & 3 \end{array}\right] = \left[\begin{array}{rr} -1 & x \\ y & z \end{array}\right] \][/tex]
The elements of the matrices in corresponding positions must be equal. Let's match them element by element:
1. First row, first column:
[tex]\[ -1 = -1 \][/tex]
This equation is trivially satisfied.
2. First row, second column:
[tex]\[ -6 = x \][/tex]
From this equation, we find:
[tex]\[ x = -6 \][/tex]
3. Second row, first column:
[tex]\[ 9 = y \][/tex]
From this equation, we find:
[tex]\[ y = 9 \][/tex]
4. Second row, second column:
[tex]\[ 3 = z \][/tex]
From this equation, we find:
[tex]\[ z = 3 \][/tex]
Thus, the values of the variables are:
[tex]\[ \begin{array}{l} x = -6 \\ y = 9 \\ z = 3 \end{array} \][/tex]
These results can be written as:
[tex]\[ \boxed{-6} \][/tex]
[tex]\[ \boxed{9} \][/tex]
[tex]\[ \boxed{3} \][/tex]
The given matrices are:
[tex]\[ \left[\begin{array}{rr} -1 & -6 \\ 9 & 3 \end{array}\right] = \left[\begin{array}{rr} -1 & x \\ y & z \end{array}\right] \][/tex]
The elements of the matrices in corresponding positions must be equal. Let's match them element by element:
1. First row, first column:
[tex]\[ -1 = -1 \][/tex]
This equation is trivially satisfied.
2. First row, second column:
[tex]\[ -6 = x \][/tex]
From this equation, we find:
[tex]\[ x = -6 \][/tex]
3. Second row, first column:
[tex]\[ 9 = y \][/tex]
From this equation, we find:
[tex]\[ y = 9 \][/tex]
4. Second row, second column:
[tex]\[ 3 = z \][/tex]
From this equation, we find:
[tex]\[ z = 3 \][/tex]
Thus, the values of the variables are:
[tex]\[ \begin{array}{l} x = -6 \\ y = 9 \\ z = 3 \end{array} \][/tex]
These results can be written as:
[tex]\[ \boxed{-6} \][/tex]
[tex]\[ \boxed{9} \][/tex]
[tex]\[ \boxed{3} \][/tex]