Answered

Select the correct answer.

What is this expression in simplified form?
[tex]\[
(6 \sqrt{2})(-3 \sqrt{5})
\][/tex]

A. -90
B. [tex]\(-18 \sqrt{10}\)[/tex]
C. [tex]\(-18 \sqrt{7}\)[/tex]
D. [tex]\(3 \sqrt{7}\)[/tex]



Answer :

To simplify the expression [tex]\((6 \sqrt{2})(-3 \sqrt{5})\)[/tex], follow these steps:

1. Multiply the coefficients: The coefficients here are 6 and -3. When you multiply these together:
[tex]\[ 6 \times -3 = -18 \][/tex]

2. Multiply the square roots: The square roots here are [tex]\(\sqrt{2}\)[/tex] and [tex]\(\sqrt{5}\)[/tex]. When multiplying square roots, you can multiply the numbers inside the square roots together:
[tex]\[ \sqrt{2} \times \sqrt{5} = \sqrt{2 \times 5} = \sqrt{10} \][/tex]

3. Combine the results: Now, combine the result of the coefficients and the result of the square roots:
[tex]\[ (6 \sqrt{2})(-3 \sqrt{5}) = -18 \sqrt{10} \][/tex]

Hence, the simplified form of the expression [tex]\((6 \sqrt{2})(-3 \sqrt{5})\)[/tex] is:
[tex]\[ \boxed{-18 \sqrt{10}} \][/tex]

So, the correct answer is:
B. [tex]\(-18 \sqrt{10}\)[/tex]