Answered

Which expression is equivalent to [tex]\( 10 \sqrt{5} \)[/tex]?

A. [tex]\( \sqrt{500} \)[/tex]

B. [tex]\( \sqrt{105} \)[/tex]

C. [tex]\( \sqrt{50} \)[/tex]

D. [tex]\( \sqrt{15} \)[/tex]



Answer :

To determine which expression is equivalent to [tex]\(10 \sqrt{5}\)[/tex], we will evaluate each of the given options and compare the outcomes.

1. Evaluate [tex]\(\sqrt{500}\)[/tex]:
The square root of 500 is approximately:
[tex]\[ \sqrt{500} \approx 22.360679774997898 \][/tex]

2. Evaluate [tex]\(\sqrt{105}\)[/tex]:
The square root of 105 is approximately:
[tex]\[ \sqrt{105} \approx 10.246950765959598 \][/tex]

3. Evaluate [tex]\(\sqrt{50}\)[/tex]:
The square root of 50 is approximately:
[tex]\[ \sqrt{50} \approx 7.0710678118654755 \][/tex]

4. Evaluate [tex]\(\sqrt{15}\)[/tex]:
The square root of 15 is approximately:
[tex]\[ \sqrt{15} \approx 3.872983346207417 \][/tex]

Now, compute [tex]\(10 \sqrt{5}\)[/tex]:
[tex]\[ 10 \sqrt{5} \approx 10 \times 2.236067977499789 \approx 22.360679774997898 \][/tex]

Comparing this result to the evaluated expressions above, we see that:
[tex]\[ 10 \sqrt{5} \approx 22.360679774997898 \][/tex]
is equal to [tex]\(\sqrt{500}\)[/tex].

Hence, the correct answer is:
[tex]\[ \boxed{\sqrt{500}} \][/tex]