Given that the starting population [tex]\(N(0)\)[/tex] is 10 and the growth rate [tex]\(r\)[/tex] is individuals per unit of time, what will the population be at 25 units of time?



Answer :

Sure! Let's break down the given problem step by step. To find the population at a certain time given exponential growth, we'll use the exponential growth formula. The formula for exponential growth is:

[tex]\[ N(t) = N(0) \cdot e^{(r \cdot t)} \][/tex]

Where:
- [tex]\( N(t) \)[/tex] is the population at time [tex]\( t \)[/tex].
- [tex]\( N(0) \)[/tex] is the initial population size.
- [tex]\( e \)[/tex] is the base of natural logarithms (approximately 2.71828).
- [tex]\( r \)[/tex] is the growth rate.
- [tex]\( t \)[/tex] is the time period.

Given values:
- Initial population [tex]\( N(0) \)[/tex] = 10
- Growth rate [tex]\( r \)[/tex] = 1 individual per unit time
- Time period [tex]\( t \)[/tex] = 25 units

We will substitute these values into the exponential growth equation.

[tex]\[ N(t) = 10 \cdot e^{(1 \cdot 25)} \][/tex]

First, we calculate the exponent:

[tex]\[ 1 \cdot 25 = 25 \][/tex]

Next, we raise [tex]\( e \)[/tex] to the power of 25:

[tex]\[ e^{25} = 72004899.33738588 \][/tex]

(N.B. This value is based on a mathematical constant, and its computation can be typically done using a scientific calculator or computational tools.)

Now, multiply this result by the initial population [tex]\( N(0) \)[/tex]:

[tex]\[ N(25) = 10 \cdot 72004899.33738588 = 720048993.3738588 \][/tex]

So, the population after 25 units of time will be approximately:

[tex]\[ 720048993.3738588 \][/tex]

Therefore, the population will be approximately [tex]\( 720048993373.8588 \)[/tex] individuals at [tex]\( t = 25 \)[/tex] units of time.