What are the zeros of the function below? Check all that apply.

[tex]\[ F(x)=\frac{(x+3)(x-1)}{(x-2)(x+2)} \][/tex]

A. -5
B. -3
C. 3
D. 2
E. 1
F. -2



Answer :

To determine the zeros of the function [tex]\( F(x) = \frac{(x+3)(x-1)}{(x-2)(x+2)} \)[/tex], we need to set the numerator equal to zero while ensuring that the denominator does not become zero. The numerator of the function is [tex]\((x + 3)(x - 1)\)[/tex] and the denominator is [tex]\((x - 2)(x + 2)\)[/tex].

### Step-by-Step Solution:

1. Find the zeros of the numerator:
We set the numerator [tex]\((x + 3)(x - 1)\)[/tex] equal to zero:
[tex]\[ (x + 3)(x - 1) = 0 \][/tex]
Solving for [tex]\(x\)[/tex], we get:
[tex]\[ x + 3 = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]
[tex]\[ x = -3 \quad \text{or} \quad x = 1 \][/tex]
Therefore, the zeros are [tex]\(x = -3\)[/tex] and [tex]\(x = 1\)[/tex].

2. Check that the zeros do not make the denominator zero:
The denominator of the function is [tex]\((x - 2)(x + 2)\)[/tex]. We must ensure that neither [tex]\(x = -3\)[/tex] nor [tex]\(x = 1\)[/tex] makes the denominator zero:
- Substituting [tex]\(x = -3\)[/tex]:
[tex]\[ (x - 2)(x + 2) = (-3 - 2)(-3 + 2) = (-5)(-1) = 5 \neq 0 \][/tex]
- Substituting [tex]\(x = 1\)[/tex]:
[tex]\[ (x - 2)(x + 2) = (1 - 2)(1 + 2) = (-1)(3) = -3 \neq 0 \][/tex]

Both [tex]\(x = -3\)[/tex] and [tex]\(x = 1\)[/tex] do not make the denominator zero, so these values are valid zeros for the function.

3. Check the given options against the zeros:
The given options are: -5, -3, 3, 2, 1, -2. We need to check which of these are zeros of the function:
- Option [tex]\(-5\)[/tex]: Not a zero.
- Option [tex]\(-3\)[/tex]: Is a zero.
- Option [tex]\(3\)[/tex]: Not a zero.
- Option [tex]\(2\)[/tex]: Not a zero (moreover, it makes the denominator zero).
- Option [tex]\(1\)[/tex]: Is a zero.
- Option [tex]\(-2\)[/tex]: Not a zero (moreover, it makes the denominator zero).

Thus, the zeros of the function [tex]\( F(x) = \frac{(x+3)(x-1)}{(x-2)(x+2)} \)[/tex] from the given options are:

- B. -3
- E. 1