If [tex]\( f(x) = 2(x)^2 + 5 \sqrt{(x+2)} \)[/tex], complete the following statement (round your answer to the nearest hundredth):

[tex]\( f(0) = \)[/tex] _________



Answer :

To solve the problem where we need to find the value of the function [tex]\( f(x) = 2(x)^2 + 5 \sqrt{(x+2)} \)[/tex] when [tex]\( x = 0 \)[/tex], follow these steps:

1. Substitute [tex]\( x = 0 \)[/tex] into the function:

[tex]\[ f(0) = 2(0)^2 + 5 \sqrt{(0+2)} \][/tex]

2. Simplify the expression:

- First, calculate [tex]\( 2(0)^2 \)[/tex]:

[tex]\[ 2(0)^2 = 2 \cdot 0^2 = 2 \cdot 0 = 0 \][/tex]

- Next, calculate [tex]\( 5 \sqrt{(0+2)} \)[/tex]:

[tex]\[ \sqrt{(0+2)} = \sqrt{2} \][/tex]
[tex]\[ 5 \sqrt{2} \][/tex]

3. Combine the results:

[tex]\[ f(0) = 0 + 5 \sqrt{2} \][/tex]

4. Calculate the value of [tex]\( 5 \sqrt{2} \)[/tex]:

The value of [tex]\( \sqrt{2} \approx 1.414213562 \)[/tex]. Therefore,

[tex]\[ 5 \sqrt{2} \approx 5 \cdot 1.414213562 = 7.0710678118654755 \][/tex]

5. Round the result to the nearest hundredth:

[tex]\[ 7.0710678118654755 \approx 7.07 \][/tex]

Thus, the value of [tex]\( f(0) \)[/tex] is:

[tex]\[ f(0) = 7.07 \][/tex]