Certainly! Let's multiply the expression [tex]\(3x(2x - 1)\)[/tex] step-by-step.
Step 1: Represent Factor 1, which is [tex]\(3x\)[/tex].
Factor 1: [tex]\(3x\)[/tex]
Step 2: Represent Factor 2, which is [tex]\(2x - 1\)[/tex].
Factor 2: [tex]\(2x - 1\)[/tex]
Step 3: Multiply the two factors to get the product.
To multiply [tex]\(3x(2x - 1)\)[/tex], we will use the distributive property. Let's distribute [tex]\(3x\)[/tex] to each term inside the parentheses:
- Multiply [tex]\(3x\)[/tex] by the first term [tex]\(2x\)[/tex]:
[tex]\[
3x \cdot 2x = 6x^2
\][/tex]
- Multiply [tex]\(3x\)[/tex] by the second term [tex]\(-1\)[/tex]:
[tex]\[
3x \cdot -1 = -3x
\][/tex]
Now, combine these results:
[tex]\[
6x^2 - 3x
\][/tex]
Summary:
- Factor 1: [tex]\(3x\)[/tex]
- Factor 2: [tex]\(2x - 1\)[/tex]
- Product: [tex]\(6x^2 - 3x\)[/tex]
So, the product of [tex]\(3x(2x - 1)\)[/tex] is [tex]\(6x^2 - 3x\)[/tex].