Solve [tex]\( 3kx + 24 = 9kx \)[/tex] for [tex]\( x \)[/tex].

A. [tex]\( x = -\frac{2}{k} \)[/tex]
B. [tex]\( x = -\frac{4}{4} \)[/tex]
C. [tex]\( x = \frac{4}{k} \)[/tex]
D. [tex]\( x = \frac{2}{k} \)[/tex]



Answer :

To solve the equation [tex]\( 3kx + 24 = 9kx \)[/tex] for [tex]\( x \)[/tex], let's go through the steps one by one.

1. Start with the given equation:

[tex]\[ 3kx + 24 = 9kx \][/tex]

2. Move all terms involving [tex]\( x \)[/tex] to one side of the equation:

Subtract [tex]\( 3kx \)[/tex] from both sides:

[tex]\[ 24 = 9kx - 3kx \][/tex]

3. Combine like terms on the right side of the equation:

[tex]\[ 24 = 6kx \][/tex]

4. Solve for [tex]\( x \)[/tex]:

Divide both sides of the equation by [tex]\( 6k \)[/tex]:

[tex]\[ x = \frac{24}{6k} \][/tex]

5. Simplify the fraction:

[tex]\[ x = \frac{24}{6k} = \frac{4}{k} \][/tex]

So, the solution is [tex]\( x = \frac{4}{k} \)[/tex].

Answer: C. [tex]\( x = \frac{4}{k} \)[/tex]