What is the difference between the whole number and the improper fraction below?

[tex]\[ 11 - \frac{8}{3} \][/tex]

A. [tex]\(8 \frac{1}{3}\)[/tex]

B. [tex]\(13 \frac{2}{3}\)[/tex]

C. [tex]\(8 \frac{2}{3}\)[/tex]

D. [tex]\(9 \frac{1}{3}\)[/tex]



Answer :

To find the difference between the whole number [tex]\(11\)[/tex] and the improper fraction [tex]\(\frac{8}{3}\)[/tex], we'll proceed step-by-step.

First, convert the improper fraction [tex]\(\frac{8}{3}\)[/tex] into a decimal form:
[tex]\[ \frac{8}{3} \approx 2.6666666666666665 \][/tex]

Next, subtract this decimal from the whole number [tex]\(11\)[/tex]:
[tex]\[ 11 - 2.6666666666666665 \approx 8.333333333333334 \][/tex]

Now, we will convert the result [tex]\(8.333333333333334\)[/tex] into a mixed fraction.

The integer part of the result is [tex]\(8\)[/tex].

To find the fractional part:
1. Take the decimal part [tex]\(0.333333333333334\)[/tex].
2. Convert this decimal to a fraction.

Since [tex]\(0.333333333333334\)[/tex] is approximately [tex]\(\frac{1}{3}\)[/tex], the mixed fraction is:
[tex]\[ 8 \frac{1}{3} \][/tex]

So, the difference between [tex]\(11\)[/tex] and [tex]\(\frac{8}{3}\)[/tex] is:
[tex]\[ 8 \frac{1}{3} \][/tex]

Therefore, the answer is:
[tex]\[ \boxed{8 \frac{1}{3}} \][/tex]

And from the given options, the correct choice is:
[tex]\[ \text{A. } 8 \frac{1}{3} \][/tex]