To find the difference between the whole number [tex]\(11\)[/tex] and the improper fraction [tex]\(\frac{8}{3}\)[/tex], we'll proceed step-by-step.
First, convert the improper fraction [tex]\(\frac{8}{3}\)[/tex] into a decimal form:
[tex]\[
\frac{8}{3} \approx 2.6666666666666665
\][/tex]
Next, subtract this decimal from the whole number [tex]\(11\)[/tex]:
[tex]\[
11 - 2.6666666666666665 \approx 8.333333333333334
\][/tex]
Now, we will convert the result [tex]\(8.333333333333334\)[/tex] into a mixed fraction.
The integer part of the result is [tex]\(8\)[/tex].
To find the fractional part:
1. Take the decimal part [tex]\(0.333333333333334\)[/tex].
2. Convert this decimal to a fraction.
Since [tex]\(0.333333333333334\)[/tex] is approximately [tex]\(\frac{1}{3}\)[/tex], the mixed fraction is:
[tex]\[
8 \frac{1}{3}
\][/tex]
So, the difference between [tex]\(11\)[/tex] and [tex]\(\frac{8}{3}\)[/tex] is:
[tex]\[
8 \frac{1}{3}
\][/tex]
Therefore, the answer is:
[tex]\[
\boxed{8 \frac{1}{3}}
\][/tex]
And from the given options, the correct choice is:
[tex]\[
\text{A. } 8 \frac{1}{3}
\][/tex]