The table represents an exponential function.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
1 & 0.25 \\
\hline
2 & 0.125 \\
\hline
3 & 0.0625 \\
\hline
4 & 0.03125 \\
\hline
\end{tabular}
\][/tex]

What is the multiplicative rate of change of the function?

A. 0.2
B. 0.25
C. 0.5
D. 0.75



Answer :

To determine the multiplicative rate of change for an exponential function given the table of values, we'll examine the relationship between consecutive [tex]\( y \)[/tex]-values.

[tex]\[ \begin{tabular}{|c|c|} \hline x & y \\ \hline 1 & 0.25 \\ \hline 2 & 0.125 \\ \hline 3 & 0.0625 \\ \hline 4 & 0.03125 \\ \hline \end{tabular} \][/tex]

For an exponential function, the multiplicative rate of change is the ratio of any [tex]\( y \)[/tex]-value to the previous [tex]\( y \)[/tex]-value.

Let's calculate this ratio using the first two pairs of [tex]\( y \)[/tex]-values. Specifically, we will consider:

[tex]\[ \text{Rate of change} = \frac{\text{y-value at } x=2}{\text{y-value at } x=1} = \frac{0.125}{0.25} \][/tex]

Dividing these values:

[tex]\[ \frac{0.125}{0.25} = 0.5 \][/tex]

Therefore, the multiplicative rate of change of the function is [tex]\( 0.5 \)[/tex].

So, the correct answer is:
[tex]\[ \boxed{0.5} \][/tex]