\begin{tabular}{|l|l|}
\hline
[tex]$x$[/tex] & \multicolumn{1}{|c|}{[tex]$f(x)$[/tex]} \\
\hline
6 & -3 \\
\hline
7 & -1 \\
\hline
8 & -7 \\
\hline
\end{tabular}

1. What is [tex]\( f(8) \)[/tex]? [tex]\(\square\)[/tex]

2. What is [tex]\( f^{-1}(-7) \)[/tex]? [tex]\(\square\)[/tex]

3. What is [tex]\( f(6) \)[/tex]? [tex]\(\square\)[/tex]

4. What is [tex]\( f^{-1}(-3) \)[/tex]? [tex]\(\square\)[/tex]



Answer :

Let's go through each of the questions step-by-step using the provided function values from the table.

1. What is [tex]\( f(8) \)[/tex]?

Look for the value of [tex]\( f \)[/tex] when [tex]\( x = 8 \)[/tex] in the given table:

[tex]\[ f(8) = -7 \][/tex]

Thus, [tex]\( f(8) = -7 \)[/tex].

2. What is [tex]\( f^{-1}(-7) \)[/tex]?

To find [tex]\( f^{-1}(-7) \)[/tex], we need to determine the value of [tex]\( x \)[/tex] such that [tex]\( f(x) = -7 \)[/tex]. From the table, we see:

[tex]\[ f(8) = -7 \][/tex]

Therefore, [tex]\( f^{-1}(-7) = 8 \)[/tex].

3. What is [tex]\( f(6) \)[/tex]?

Look for the value of [tex]\( f \)[/tex] when [tex]\( x = 6 \)[/tex] in the table:

[tex]\[ f(6) = -3 \][/tex]

So, [tex]\( f(6) = -3 \)[/tex].

4. What is [tex]\( f^{-1}(-3) \)[/tex]?

To find [tex]\( f^{-1}(-3) \)[/tex], we need to find the value of [tex]\( x \)[/tex] such that [tex]\( f(x) = -3 \)[/tex]. According to the table:

[tex]\[ f(6) = -3 \][/tex]

Therefore, [tex]\( f^{-1}(-3) = 6 \)[/tex].

In summary, the answers are:
- [tex]\( f(8) = -7 \)[/tex]
- [tex]\( f^{-1}(-7) = 8 \)[/tex]
- [tex]\( f(6) = -3 \)[/tex]
- [tex]\( f^{-1}(-3) = 6 \)[/tex]