Point [tex]\( M \)[/tex] is the midpoint of segment [tex]\( KL \)[/tex]. Point [tex]\( N \)[/tex] is the midpoint of segment [tex]\( ML \)[/tex].

Point [tex]\( K \)[/tex] is located at [tex]\((-7, -6)\)[/tex], and point [tex]\( L \)[/tex] is located at [tex]\( (1, 10) \)[/tex]. What are the coordinates of point [tex]\( N \)[/tex]?

A. [tex]\((-1, 6)\)[/tex]

B. [tex]\((-2, 6)\)[/tex]

C. [tex]\((-5, -2)\)[/tex]

D. [tex]\((-3, 2)\)[/tex]



Answer :

To determine the coordinates of point [tex]\( N \)[/tex], we need to follow the mathematical steps provided.

1. Firstly, we find the midpoint [tex]\( M \)[/tex] of the segment [tex]\( KL \)[/tex]. The formula for the midpoint [tex]\( M \)[/tex] of a segment with endpoints [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by:

[tex]\[ M\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Given the coordinates of point [tex]\( K \)[/tex] as [tex]\((-7, -6)\)[/tex] and point [tex]\( L \)[/tex] as [tex]\((1, 10)\)[/tex]:

- For the x-coordinate of [tex]\( M \)[/tex]:
[tex]\[ \frac{-7 + 1}{2} = \frac{-6}{2} = -3 \][/tex]

- For the y-coordinate of [tex]\( M \)[/tex]:
[tex]\[ \frac{-6 + 10}{2} = \frac{4}{2} = 2 \][/tex]

Thus, point [tex]\( M \)[/tex] has coordinates [tex]\((-3, 2)\)[/tex].

2. Next, we find the midpoint [tex]\( N \)[/tex] of the segment [tex]\( ML \)[/tex]. Using the same midpoint formula, where [tex]\( M \)[/tex] has coordinates [tex]\((-3, 2)\)[/tex] and [tex]\( L \)[/tex] has coordinates [tex]\((1, 10)\)[/tex]:

- For the x-coordinate of [tex]\( N \)[/tex]:
[tex]\[ \frac{-3 + 1}{2} = \frac{-2}{2} = -1 \][/tex]

- For the y-coordinate of [tex]\( N \)[/tex]:
[tex]\[ \frac{2 + 10}{2} = \frac{12}{2} = 6 \][/tex]

Therefore, the coordinates of point [tex]\( N \)[/tex] are [tex]\((-1, 6)\)[/tex].

Based on our calculations, the correct option matching the coordinates of point [tex]\( N \)[/tex] is:

A. [tex]\((-1, 6)\)[/tex]