Use a quotient identity to find [tex]\(\tan (\theta)\)[/tex] if [tex]\(\sin (\theta) = -\frac{\sqrt{7}}{6}\)[/tex] and [tex]\(\cos (\theta) = -\frac{5}{6}\)[/tex].

(Note: Enter the exact, fully simplified and rationalized answer.)



Answer :

To find [tex]\(\tan(\theta)\)[/tex] using the given values for [tex]\(\sin(\theta)\)[/tex] and [tex]\(\cos(\theta)\)[/tex], we can use the quotient identity for tangent. The quotient identity states that:

[tex]\[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \][/tex]

Given:
[tex]\[ \sin(\theta) = -\frac{\sqrt{7}}{6} \][/tex]
[tex]\[ \cos(\theta) = -\frac{5}{6} \][/tex]

We substitute these values into the quotient identity:

[tex]\[ \tan(\theta) = \frac{-\frac{\sqrt{7}}{6}}{-\frac{5}{6}} \][/tex]

When dividing fractions, the division of [tex]\(\frac{a}{b}\)[/tex] by [tex]\(\frac{c}{d}\)[/tex] can be performed by multiplying [tex]\(a\)[/tex] by the reciprocal of [tex]\(b\)[/tex]:

[tex]\[ \tan(\theta) = -\frac{\sqrt{7}}{6} \div -\frac{5}{6} = -\frac{\sqrt{7}}{6} \times -\frac{6}{5} \][/tex]

Now, multiply the numerators together and the denominators together:

[tex]\[ \tan(\theta) = \frac{(-\sqrt{7}) \times (-6)}{6 \times 5} = \frac{6\sqrt{7}}{30} \][/tex]

Simplify the fraction by dividing the numerator and the denominator by their greatest common divisor, which is 6:

[tex]\[ \tan(\theta) = \frac{\sqrt{7}}{5} \][/tex]

Therefore, [tex]\(\tan(\theta) = \frac{\sqrt{7}}{5}\)[/tex].

In decimal form, this value is approximately equal to 0.529150262212918.