Subtract [tex]\( 8 + 7i \)[/tex] from [tex]\( 4 - 16i \)[/tex].

A. [tex]\( 4 - 23i \)[/tex]

B. [tex]\( 4 + 9i \)[/tex]

C. [tex]\( 4 - 11i \)[/tex]

D. [tex]\( -4 - 23i \)[/tex]



Answer :

To subtract the complex number [tex]\(8 + 7i\)[/tex] from [tex]\(4 - 16i\)[/tex], follow these steps:

1. Write down the complex numbers:
- The first complex number is [tex]\(4 - 16i\)[/tex].
- The second complex number is [tex]\(8 + 7i\)[/tex].

2. Set up the subtraction:
[tex]\[ (4 - 16i) - (8 + 7i) \][/tex]

3. Distribute the subtraction across the real and imaginary parts:
[tex]\[ (4 - 8) + (-16i - 7i) \][/tex]

4. Perform the subtraction on the real parts:
[tex]\[ 4 - 8 = -4 \][/tex]

5. Perform the subtraction on the imaginary parts:
[tex]\[ -16i - 7i = -23i \][/tex]

6. Combine the results:
[tex]\[ -4 - 23i \][/tex]

So, the result of subtracting [tex]\(8 + 7i\)[/tex] from [tex]\(4 - 16i\)[/tex] is [tex]\(-4 - 23i\)[/tex].

Therefore, the correct answer is:

[tex]\[ \boxed{-4 - 23i} \][/tex]

Thus, the correct choice is D. [tex]$-4 - 23 i$[/tex].