Answer :
To find the complex number equivalent to the expression [tex]\((2 + i)(8 - 3i) - (23 + 34i)\)[/tex], we can tackle the problem step-by-step:
1. First, multiply the complex numbers [tex]\((2 + i)(8 - 3i)\)[/tex]:
- Use the distributive property (also known as the FOIL method for binomials):
[tex]\[ (2 + i)(8 - 3i) = 2 \cdot 8 + 2 \cdot (-3i) + i \cdot 8 + i \cdot (-3i) \][/tex]
- Perform the multiplications:
[tex]\[ 2 \cdot 8 = 16 \][/tex]
[tex]\[ 2 \cdot (-3i) = -6i \][/tex]
[tex]\[ i \cdot 8 = 8i \][/tex]
[tex]\[ i \cdot (-3i) = -3i^2 \][/tex]
- Remember that [tex]\(i^2 = -1\)[/tex], so:
[tex]\[ -3i^2 = -3(-1) = 3 \][/tex]
- Combine all the terms:
[tex]\[ 16 - 6i + 8i + 3 \][/tex]
- Simplify this to:
[tex]\[ 19 + 2i \][/tex]
2. Next, subtract the complex number [tex]\((23 + 34i)\)[/tex] from the result:
- Subtract the real parts:
[tex]\[ 19 - 23 = -4 \][/tex]
- Subtract the imaginary parts:
[tex]\[ 2i - 34i = -32i \][/tex]
3. Combine the results:
- The result is:
[tex]\[ -4 - 32i \][/tex]
Thus, the complex number equivalent to the given expression [tex]\((2 + i)(8 - 3i) - (23 + 34i)\)[/tex] is [tex]\(-4 - 32i\)[/tex].
So the correct answer is:
C. [tex]\(-4 - 32i\)[/tex]
1. First, multiply the complex numbers [tex]\((2 + i)(8 - 3i)\)[/tex]:
- Use the distributive property (also known as the FOIL method for binomials):
[tex]\[ (2 + i)(8 - 3i) = 2 \cdot 8 + 2 \cdot (-3i) + i \cdot 8 + i \cdot (-3i) \][/tex]
- Perform the multiplications:
[tex]\[ 2 \cdot 8 = 16 \][/tex]
[tex]\[ 2 \cdot (-3i) = -6i \][/tex]
[tex]\[ i \cdot 8 = 8i \][/tex]
[tex]\[ i \cdot (-3i) = -3i^2 \][/tex]
- Remember that [tex]\(i^2 = -1\)[/tex], so:
[tex]\[ -3i^2 = -3(-1) = 3 \][/tex]
- Combine all the terms:
[tex]\[ 16 - 6i + 8i + 3 \][/tex]
- Simplify this to:
[tex]\[ 19 + 2i \][/tex]
2. Next, subtract the complex number [tex]\((23 + 34i)\)[/tex] from the result:
- Subtract the real parts:
[tex]\[ 19 - 23 = -4 \][/tex]
- Subtract the imaginary parts:
[tex]\[ 2i - 34i = -32i \][/tex]
3. Combine the results:
- The result is:
[tex]\[ -4 - 32i \][/tex]
Thus, the complex number equivalent to the given expression [tex]\((2 + i)(8 - 3i) - (23 + 34i)\)[/tex] is [tex]\(-4 - 32i\)[/tex].
So the correct answer is:
C. [tex]\(-4 - 32i\)[/tex]