akofad22
Answered

If an electromagnetic wave has a frequency of [tex]\(8 \times 10^{14} \text{ Hz}\)[/tex], what is its wavelength? Use [tex]\(\lambda = \frac{v}{f}\)[/tex]. The speed of light is [tex]\(3 \times 10^8 \text{ m/s}\)[/tex].

A. [tex]\(3.8 \times 10^{-7} \text{ m}\)[/tex]

B. [tex]\(2.7 \times 10^{-6} \text{ m}\)[/tex]

C. [tex]\(2.7 \times 10^6 \text{ m}\)[/tex]

D. [tex]\(3.8 \times 10^{21} \text{ m}\)[/tex]



Answer :

Certainly! Let's solve this step by step using the given information.

We have the relationship between frequency, speed of light, and wavelength given by the formula:

[tex]\[ \lambda = \frac{v}{f} \][/tex]

where:
- [tex]\(\lambda\)[/tex] is the wavelength,
- [tex]\(v\)[/tex] is the speed of light, and
- [tex]\(f\)[/tex] is the frequency.

Given:
[tex]\[ v = 3 \times 10^8 \, \text{m/s} \][/tex]
[tex]\[ f = 8 \times 10^{14} \, \text{Hz} \][/tex]

We substitute the given values into the formula:

[tex]\[ \lambda = \frac{3 \times 10^8 \, \text{m/s}}{8 \times 10^{14} \, \text{Hz}} \][/tex]

Carrying out the division:

[tex]\[ \lambda = \frac{3 \times 10^8}{8 \times 10^{14}} \][/tex]

This simplifies to:

[tex]\[ \lambda = \frac{3}{8} \times 10^{8-14} \][/tex]

[tex]\[ \lambda = \frac{3}{8} \times 10^{-6} \][/tex]

[tex]\[ \lambda = 0.375 \times 10^{-6} \][/tex]

Expressing it in scientific notation:

[tex]\[ \lambda = 3.75 \times 10^{-7} \, \text{m} \][/tex]

So the wavelength of the electromagnetic wave is:

[tex]\[ \lambda = 3.75 \times 10^{-7} \, \text{m} \][/tex]

Comparing this with the given options:

A. [tex]\(3.8 \times 10^{-7} \, \text{m}\)[/tex]
B. [tex]\(2.7 \times 10^{-6} \, \text{m}\)[/tex]
C. [tex]\(2.7 \times 10^6 \, \text{m}\)[/tex]
D. [tex]\(3.8 \times 10^{21} \, \text{m}\)[/tex]

The correct answer is closest to option A. [tex]\(3.8 \times 10^{-7} \, \text{m}\)[/tex].

Therefore, the answer is:
A. [tex]\(3.8 \times 10^{-7} \, \text{m}\)[/tex].