Use a Pythagorean identity to find [tex]\(\cos (\theta)\)[/tex] if [tex]\(\sin (\theta) = -\frac{3}{4}\)[/tex] and the terminal side of [tex]\(\theta\)[/tex] lies in quadrant II.

[tex]\(\cos (\theta) = \boxed{\text{your answer}}\)[/tex]



Answer :

To find [tex]\(\cos(\theta)\)[/tex] using the Pythagorean identity given that [tex]\(\sin(\theta) = -\frac{3}{4}\)[/tex] and the angle [tex]\(\theta\)[/tex] is in the second quadrant, follow these steps:

1. Apply the Pythagorean Identity:

The Pythagorean identity states:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]

2. Square the given value of [tex]\(\sin(\theta)\)[/tex]:

Given [tex]\(\sin(\theta) = -\frac{3}{4}\)[/tex], we calculate:
[tex]\[ \sin^2(\theta) = \left(-\frac{3}{4}\right)^2 = \frac{9}{16} \][/tex]

3. Substitute [tex]\(\sin^2(\theta)\)[/tex] into the Pythagorean identity:

Substitute [tex]\(\sin^2(\theta) = \frac{9}{16}\)[/tex] into the identity:
[tex]\[ \frac{9}{16} + \cos^2(\theta) = 1 \][/tex]

4. Solve for [tex]\(\cos^2(\theta)\)[/tex]:

Rearrange the equation to solve for [tex]\(\cos^2(\theta)\)[/tex]:
[tex]\[ \cos^2(\theta) = 1 - \frac{9}{16} \][/tex]

Since [tex]\(1\)[/tex] can be written as [tex]\(\frac{16}{16}\)[/tex], we get:
[tex]\[ \cos^2(\theta) = \frac{16}{16} - \frac{9}{16} = \frac{7}{16} \][/tex]

5. Take the square root to find [tex]\(\cos(\theta)\)[/tex]:

To find [tex]\(\cos(\theta)\)[/tex], take the square root of both sides:
[tex]\[ \cos(\theta) = \pm \sqrt{\frac{7}{16}} = \pm \frac{\sqrt{7}}{4} \][/tex]

6. Determine the correct sign of [tex]\(\cos(\theta)\)[/tex]:

Since [tex]\(\theta\)[/tex] is in the second quadrant, where cosine is negative, we select the negative value:
[tex]\[ \cos(\theta) = -\frac{\sqrt{7}}{4} \][/tex]

Hence, the exact and simplified value of [tex]\(\cos(\theta)\)[/tex] is:
[tex]\[ \cos(\theta) = -\frac{ \sqrt{7}}{4} \][/tex]