Triangle [tex]\( PQR \)[/tex] has vertices [tex]\( P(-2, 6), Q(-8, 4), \)[/tex] and [tex]\( R(1, -2) \)[/tex]. It is translated according to the rule [tex]\( (x, y) \rightarrow (x-2, y-16) \)[/tex].

What is the [tex]\( y \)[/tex]-value of [tex]\( P' \)[/tex]?

A. [tex]\(-18\)[/tex]
B. [tex]\(-16\)[/tex]
C. [tex]\(-12\)[/tex]
D. [tex]\(-10\)[/tex]



Answer :

To find the [tex]$y$[/tex]-value of [tex]$P'$[/tex], which is the new position of vertex [tex]$P$[/tex] after the translation, we'll need to follow the given translation rule [tex]\((x, y) \rightarrow (x-2, y-16)\)[/tex].

Let's begin by applying this rule to the coordinates of point [tex]$P$[/tex] [tex]\((-2, 6)\)[/tex].

1. Identify the original coordinates of point [tex]\(P\)[/tex]:
[tex]\[ P = (-2, 6) \][/tex]

2. Apply the translation rule to the [tex]\(x\)[/tex]-coordinate:
[tex]\[ x' = x - 2 \Rightarrow x' = -2 - 2 = -4 \][/tex]

3. Apply the translation rule to the [tex]\(y\)[/tex]-coordinate:
[tex]\[ y' = y - 16 \Rightarrow y' = 6 - 16 = -10 \][/tex]

Therefore, the translated coordinates of point [tex]\(P\)[/tex] are [tex]\((-4, -10)\)[/tex].

The [tex]\(y\)[/tex]-value of [tex]\(P'\)[/tex] is [tex]\(-10\)[/tex].

Thus, the correct answer is:
[tex]\[ \boxed{-10} \][/tex]