If you apply the changes below to the reciprocal parent function, [tex]\( F(x)=\frac{1}{x} \)[/tex], what is the equation of the new function?

- Shift 2 units left.
- Shift 9 units up.

A. [tex]\( G(x)=\frac{1}{x-9}+2 \)[/tex]

B. [tex]\( G(x)=\frac{1}{x-2}+9 \)[/tex]

C. [tex]\( G(x)=\frac{1}{x+2}+9 \)[/tex]

D. [tex]\( G(x)=\frac{1}{x+9}-2 \)[/tex]



Answer :

To transform the reciprocal parent function [tex]\( F(x) = \frac{1}{x} \)[/tex] according to the given shifts, we need to perform the following steps:

1. Shift 2 units left:
- Shifting the function to the left means adjusting the variable [tex]\(x\)[/tex] within the function. Specifically, to shift the function 2 units to the left, we replace [tex]\(x\)[/tex] with [tex]\((x + 2)\)[/tex].

Therefore, the function becomes:
[tex]\[ F(x + 2) = \frac{1}{x + 2} \][/tex]

2. Shift 9 units up:
- Shifting the function up means adding a constant to the entire function. To shift the function up by 9 units, we simply add 9 to our already shifted function.

Thus, the new function becomes:
[tex]\[ G(x) = \frac{1}{x + 2} + 9 \][/tex]

Given these steps, the correct equation for the new function is [tex]\( G(x) = \frac{1}{x + 2} + 9 \)[/tex].

Therefore, the correct answer is:

C. [tex]\( G(x) = \frac{1}{x + 2} + 9 \)[/tex]