Answer :
Certainly! Let's solve this problem step-by-step to find the mass of the crate using the formula [tex]\( F = ma \)[/tex].
1. Identify the given information:
- The force ([tex]\( F \)[/tex]) applied to the crate is 200 Newtons (N).
- The acceleration ([tex]\( a \)[/tex]) of the crate is 8 meters per second squared ([tex]\( m/s^2 \)[/tex]).
2. Recall the formula:
[tex]\( F = ma \)[/tex]
Where:
- [tex]\( F \)[/tex] is the force,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( a \)[/tex] is the acceleration.
3. Rearrange the formula to solve for mass ([tex]\( m \)[/tex]):
[tex]\[ m = \frac{F}{a} \][/tex]
4. Substitute the given values into the rearranged formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
5. Perform the division:
[tex]\[ m = 25 \, \text{kg} \][/tex]
So, the mass of the crate is [tex]\( 25 \, \text{kg} \)[/tex].
The correct answer is [tex]\( 25 \, \text{kg} \)[/tex].
1. Identify the given information:
- The force ([tex]\( F \)[/tex]) applied to the crate is 200 Newtons (N).
- The acceleration ([tex]\( a \)[/tex]) of the crate is 8 meters per second squared ([tex]\( m/s^2 \)[/tex]).
2. Recall the formula:
[tex]\( F = ma \)[/tex]
Where:
- [tex]\( F \)[/tex] is the force,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( a \)[/tex] is the acceleration.
3. Rearrange the formula to solve for mass ([tex]\( m \)[/tex]):
[tex]\[ m = \frac{F}{a} \][/tex]
4. Substitute the given values into the rearranged formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
5. Perform the division:
[tex]\[ m = 25 \, \text{kg} \][/tex]
So, the mass of the crate is [tex]\( 25 \, \text{kg} \)[/tex].
The correct answer is [tex]\( 25 \, \text{kg} \)[/tex].