Answer :
To determine the list of individuals from least to most acceleration, we need to calculate the acceleration for each person. We can use the formula for acceleration, which is defined as the change in velocity divided by the time taken to reach that velocity.
1. Xander's Acceleration:
- Final velocity [tex]\( v = 4.5 \, \text{m/s} \)[/tex]
- Time [tex]\( t = 3.5 \, \text{s} \)[/tex]
Acceleration [tex]\( a = \frac{v}{t} = \frac{4.5 \, \text{m/s}}{3.5 \, \text{s}} = 1.2857142857142858 \, \text{m/s}^2 \)[/tex]
2. Finley's Acceleration:
- Final velocity [tex]\( v = 3.6 \, \text{m/s} \)[/tex]
- Time [tex]\( t = 4.2 \, \text{s} \)[/tex]
Acceleration [tex]\( a = \frac{v}{t} = \frac{3.6 \, \text{m/s}}{4.2 \, \text{s}} = 0.8571428571428571 \, \text{m/s}^2 \)[/tex]
3. Max's Acceleration:
- Final velocity [tex]\( v = 7.3 \, \text{m/s} \)[/tex]
- Time [tex]\( t = 1.2 \, \text{s} \)[/tex]
Acceleration [tex]\( a = \frac{v}{t} = \frac{7.3 \, \text{m/s}}{1.2 \, \text{s}} = 6.083333333333333 \, \text{m/s}^2 \)[/tex]
Now, we can list the accelerations from least to most:
- Finley's acceleration: [tex]\( 0.8571428571428571 \, \text{m/s}^2 \)[/tex]
- Xander's acceleration: [tex]\( 1.2857142857142858 \, \text{m/s}^2 \)[/tex]
- Max's acceleration: [tex]\( 6.083333333333333 \, \text{m/s}^2 \)[/tex]
Thus, the order from least to most acceleration is:
Finley [tex]\(\rightarrow\)[/tex] Xander [tex]\(\rightarrow\)[/tex] Max
Therefore, the correct answer is:
Finley [tex]\(\rightarrow\)[/tex] Xander [tex]\(\rightarrow\)[/tex] Max
1. Xander's Acceleration:
- Final velocity [tex]\( v = 4.5 \, \text{m/s} \)[/tex]
- Time [tex]\( t = 3.5 \, \text{s} \)[/tex]
Acceleration [tex]\( a = \frac{v}{t} = \frac{4.5 \, \text{m/s}}{3.5 \, \text{s}} = 1.2857142857142858 \, \text{m/s}^2 \)[/tex]
2. Finley's Acceleration:
- Final velocity [tex]\( v = 3.6 \, \text{m/s} \)[/tex]
- Time [tex]\( t = 4.2 \, \text{s} \)[/tex]
Acceleration [tex]\( a = \frac{v}{t} = \frac{3.6 \, \text{m/s}}{4.2 \, \text{s}} = 0.8571428571428571 \, \text{m/s}^2 \)[/tex]
3. Max's Acceleration:
- Final velocity [tex]\( v = 7.3 \, \text{m/s} \)[/tex]
- Time [tex]\( t = 1.2 \, \text{s} \)[/tex]
Acceleration [tex]\( a = \frac{v}{t} = \frac{7.3 \, \text{m/s}}{1.2 \, \text{s}} = 6.083333333333333 \, \text{m/s}^2 \)[/tex]
Now, we can list the accelerations from least to most:
- Finley's acceleration: [tex]\( 0.8571428571428571 \, \text{m/s}^2 \)[/tex]
- Xander's acceleration: [tex]\( 1.2857142857142858 \, \text{m/s}^2 \)[/tex]
- Max's acceleration: [tex]\( 6.083333333333333 \, \text{m/s}^2 \)[/tex]
Thus, the order from least to most acceleration is:
Finley [tex]\(\rightarrow\)[/tex] Xander [tex]\(\rightarrow\)[/tex] Max
Therefore, the correct answer is:
Finley [tex]\(\rightarrow\)[/tex] Xander [tex]\(\rightarrow\)[/tex] Max