Answer :

Sure, let’s find [tex]\( h(-8) \)[/tex] given the function [tex]\( h(t) = -2(t + 5)^2 + 4 \)[/tex].

1. Substitute [tex]\( t = -8 \)[/tex] into the function [tex]\( h(t) \)[/tex]:

[tex]\[ h(-8) = -2(-8 + 5)^2 + 4 \][/tex]

2. Simplify the expression inside the parentheses:

[tex]\[ -8 + 5 = -3 \][/tex]

So the expression becomes:

[tex]\[ h(-8) = -2(-3)^2 + 4 \][/tex]

3. Square the value inside the parentheses:

[tex]\[ (-3)^2 = 9 \][/tex]

So the expression now is:

[tex]\[ h(-8) = -2 \cdot 9 + 4 \][/tex]

4. Multiply the squared value by [tex]\(-2\)[/tex]:

[tex]\[ -2 \cdot 9 = -18 \][/tex]

So the expression now is:

[tex]\[ h(-8) = -18 + 4 \][/tex]

5. Add [tex]\( 4 \)[/tex] to [tex]\(-18\)[/tex]:

[tex]\[ -18 + 4 = -14 \][/tex]

Thus, the value of [tex]\( h(-8) \)[/tex] is [tex]\(\boxed{-14}\)[/tex].