To convert microliters ([tex]\(\mu L\)[/tex]) to liters (L), we need to understand the conversion factor:
1 microliter ([tex]\(\mu L\)[/tex]) = [tex]\(1 \times 10^{-6}\)[/tex] liters (L).
Given that we have 20 microliters, let's convert it to liters:
First, multiply the amount in microliters by the conversion factor:
[tex]\( 20 \mu L \times 1 \times 10^{-6} \frac{L}{\mu L} \)[/tex].
When you perform the multiplication, you get:
[tex]\( 20 \times 10^{-6} \)[/tex] liters, which can be written in scientific notation as:
[tex]\( 2.0 \times 10^{1} \times 10^{-6} \)[/tex],
Simplifying the exponents, we get:
[tex]\( 2.0 \times 10^{1 - 6} \)[/tex],
This results in:
[tex]\( 2.0 \times 10^{-5} \)[/tex].
For clarity and correctness, let’s express the result in scientific notation with the coefficient in the appropriate format:
[tex]\( 20 \mu L = 20.0 \times 10^{-6} L = 2.0 \times 10^{-6+1} L = 2.0 \times 10^{-5} L \)[/tex].
Therefore, 20 microliters in liters, expressed in correct scientific notation, is:
[tex]\(\boxed{2.0} \times 10^{\boxed{-5}}\)[/tex].