Solve the system of two equations using substitution.

1. [tex]\( y = 2 + 3x \)[/tex]
2. [tex]\( 4x - 3y = -16 \)[/tex]

A. [tex]\((-2, 4)\)[/tex]
B. [tex]\((2, 8)\)[/tex]
C. [tex]\((-2, -4)\)[/tex]
D. [tex]\((2, 10)\)[/tex]



Answer :

Certainly! Let's solve the system of equations using substitution.

We are given two equations:
[tex]\[ \begin{array}{l} 1. \quad y = 2 + 3x \\ 2. \quad 4x - 3y = -16 \end{array} \][/tex]

Step 1: Substitute the expression for [tex]\( y \)[/tex] from the first equation into the second equation. The first equation is already solved for [tex]\( y \)[/tex], so we have:
[tex]\[ y = 2 + 3x \][/tex]

Step 2: Substitute [tex]\( y = 2 + 3x \)[/tex] into the second equation:
[tex]\[ 4x - 3(2 + 3x) = -16 \][/tex]

Step 3: Distribute the [tex]\(-3\)[/tex] inside the parentheses:
[tex]\[ 4x - 6 - 9x = -16 \][/tex]

Step 4: Combine like terms on the left side:
[tex]\[ 4x - 9x - 6 = -16 \\ -5x - 6 = -16 \][/tex]

Step 5: Add 6 to both sides of the equation to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ -5x = -16 + 6 \\ -5x = -10 \][/tex]

Step 6: Divide both sides by -5 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-10}{-5} \\ x = 2 \][/tex]

Step 7: Substitute [tex]\( x = 2 \)[/tex] back into the first equation ( [tex]\( y = 2 + 3x \)[/tex] ) to solve for [tex]\( y \)[/tex]:
[tex]\[ y = 2 + 3(2) \\ y = 2 + 6 \\ y = 8 \][/tex]

Therefore, the solution to the system of equations is [tex]\((x, y) = (2, 8)\)[/tex].

So, the correct answer is:
[tex]\[ (2, 8) \][/tex]