Answer :
To solve the given system of equations:
[tex]\[ \begin{cases} 3x + y = 2 \\ 7x - 4y = 30 \end{cases} \][/tex]
we can use the method of substitution or elimination. Here, I'll demonstrate using the elimination method.
### Step 1: Align the equations
First, we write the equations clearly one under the other:
[tex]\[ \begin{array}{l} 3x + y = 2 \quad \text{(Equation 1)} \\ 7x - 4y = 30 \quad \text{(Equation 2)} \\ \end{array} \][/tex]
### Step 2: Make coefficients of [tex]\( y \)[/tex] identical
To eliminate [tex]\( y \)[/tex], we can manipulate the equations so that the coefficients of [tex]\( y \)[/tex] in both equations are the same in absolute value. We can achieve this by multiplying Equation 1 by 4:
[tex]\[ \begin{array}{l} 4(3x + y) = 4(2) \\ \Rightarrow 12x + 4y = 8 \quad \text{(Equation 3)} \end{array} \][/tex]
Now we have:
[tex]\[ \begin{array}{l} 12x + 4y = 8 \quad \text{(Equation 3)} \\ 7x - 4y = 30 \quad \text{(Equation 2)} \\ \end{array} \][/tex]
### Step 3: Add the equations to eliminate [tex]\( y \)[/tex]
Add Equation 3 and Equation 2 to eliminate [tex]\( y \)[/tex]:
[tex]\[ (12x + 4y) + (7x - 4y) = 8 + 30 \][/tex]
Simplify the left-hand side and the right-hand side:
[tex]\[ 12x + 4y + 7x - 4y = 38 \][/tex]
[tex]\[ 19x = 38 \][/tex]
### Step 4: Solve for [tex]\( x \)[/tex]
Divide both sides by 19:
[tex]\[ x = \frac{38}{19} \][/tex]
[tex]\[ x = 2 \][/tex]
### Step 5: Substitute [tex]\( x \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]
Use Equation 1 to find [tex]\( y \)[/tex]:
[tex]\[ 3x + y = 2 \][/tex]
Substitute [tex]\( x = 2 \)[/tex]:
[tex]\[ 3(2) + y = 2 \][/tex]
[tex]\[ 6 + y = 2 \][/tex]
Subtract 6 from both sides:
[tex]\[ y = 2 - 6 \][/tex]
[tex]\[ y = -4 \][/tex]
### Conclusion
The solution to the system of equations is:
[tex]\[ (x, y) = (2, -4) \][/tex]
So, the correct answer is [tex]\( (2, -4) \)[/tex].
[tex]\[ \begin{cases} 3x + y = 2 \\ 7x - 4y = 30 \end{cases} \][/tex]
we can use the method of substitution or elimination. Here, I'll demonstrate using the elimination method.
### Step 1: Align the equations
First, we write the equations clearly one under the other:
[tex]\[ \begin{array}{l} 3x + y = 2 \quad \text{(Equation 1)} \\ 7x - 4y = 30 \quad \text{(Equation 2)} \\ \end{array} \][/tex]
### Step 2: Make coefficients of [tex]\( y \)[/tex] identical
To eliminate [tex]\( y \)[/tex], we can manipulate the equations so that the coefficients of [tex]\( y \)[/tex] in both equations are the same in absolute value. We can achieve this by multiplying Equation 1 by 4:
[tex]\[ \begin{array}{l} 4(3x + y) = 4(2) \\ \Rightarrow 12x + 4y = 8 \quad \text{(Equation 3)} \end{array} \][/tex]
Now we have:
[tex]\[ \begin{array}{l} 12x + 4y = 8 \quad \text{(Equation 3)} \\ 7x - 4y = 30 \quad \text{(Equation 2)} \\ \end{array} \][/tex]
### Step 3: Add the equations to eliminate [tex]\( y \)[/tex]
Add Equation 3 and Equation 2 to eliminate [tex]\( y \)[/tex]:
[tex]\[ (12x + 4y) + (7x - 4y) = 8 + 30 \][/tex]
Simplify the left-hand side and the right-hand side:
[tex]\[ 12x + 4y + 7x - 4y = 38 \][/tex]
[tex]\[ 19x = 38 \][/tex]
### Step 4: Solve for [tex]\( x \)[/tex]
Divide both sides by 19:
[tex]\[ x = \frac{38}{19} \][/tex]
[tex]\[ x = 2 \][/tex]
### Step 5: Substitute [tex]\( x \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]
Use Equation 1 to find [tex]\( y \)[/tex]:
[tex]\[ 3x + y = 2 \][/tex]
Substitute [tex]\( x = 2 \)[/tex]:
[tex]\[ 3(2) + y = 2 \][/tex]
[tex]\[ 6 + y = 2 \][/tex]
Subtract 6 from both sides:
[tex]\[ y = 2 - 6 \][/tex]
[tex]\[ y = -4 \][/tex]
### Conclusion
The solution to the system of equations is:
[tex]\[ (x, y) = (2, -4) \][/tex]
So, the correct answer is [tex]\( (2, -4) \)[/tex].